康家湾铅锌矿床方解石的稀土元素和碳-氧同位素地球化学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rare earth elements and C-O isotopic geochemistry of calcite in Kangjiawan Pb-Zn deposit,Hunan Province,China
  • 作者:张帮禄 ; 彭建堂 ; 阳杰华 ; 黄金川
  • 英文作者:ZHANG Bang-lu;PENG Jian-tang;YANG Jie-hua;HUANG Jin-chuan;State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;China University of Sciences;Key Laboratory of Non-ferrous Metals Metallogenic Prediction of the Ministry of Education,School of Geosciences and Info-physics,Central South University;
  • 关键词:稀土元素 ; 碳-氧同位素 ; 成矿流体 ; CO_2去气模拟 ; 康家湾铅锌矿床
  • 英文关键词:rare earth element;;carbon-oxygen-isotope;;ore-forming fluid;;CO_2 degassing modeling;;Kangjiawan Pb-Zn deposit
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中国科学院地球化学研究所矿床地球化学国家重点实验室;中国科学院大学;中南大学地球物理与信息物理学院有色金属成矿预测教育部重点实验室;
  • 出版日期:2018-02-15
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点基础研究发展计划(编号:2012CB416705);; 面上基金项目(批准号:41473043,41073036)
  • 语种:中文;
  • 页:KWXB201801003
  • 页数:11
  • CN:01
  • ISSN:52-1045/P
  • 分类号:28-38
摘要
湖南康家湾铅锌矿床是水口山铅锌矿田的重要组成部分,是一个发现较晚、埋深较深的隐伏矿床。作者对该矿2种不同产状的方解石进行了稀土元素和碳-氧同位素研究。研究表明,该矿与黄铁矿、铅锌矿共生的团块状方解石的稀土元素含量较低(4.11×10~(-6)~38.09×10~(-6)),并表现出LREE富集型的配分模式。胶结方铅矿和闪锌矿的脉状方解石,其稀土元素含量更低(1.52×10~(-6)~5.57×10~(-6)),大体表现出MREE富集型的配分模式,轻稀土略微亏损。2类方解石野外产状不同,稀土元素含量差别明显,REE配分模式也不同,暗示其成矿流体性质不同,流体来源也可能不同。这2类方解石的C、O同位素组成亦存在明显差别,脉状方解石的δ~(13)C低于块状方解石,但其δ~(18)O明显大于后者。理论模拟结果表明,该矿方解石的形成是流体沸腾CO_2去气和温度降低造成的,此外大气降水的加入也起到一定的作用。团块状方解石成矿流体的可溶性碳以HCO-3为主,其δ~(13)C、δ~(18)O值分别为-4‰和5‰,是混入了45%左右大气降水的岩浆热液。脉状方解石的成矿流体是来源不同的岩浆热液且混入约10%的大气降水,其可溶性碳以H_2CO_3为主,δ~(13)C、δ~(18)O值分别为-6‰和5‰。
        Kangjiawan lead-zinc deposit as an important part of Shuikoushan Pb-Zn orefield,Southern Hunan Province,China,is a deeply-concealed deposit and had not been discovered until the end of 1970 s'. The rare earth elements( REE) and C-O isotopic geochemistry of two different kinds of calcite from the deposit is discussed in this study. It is shown that,the lumpy calcite coexisting with pyrite,galena and sphalerite is characterized by low total REE concentrations( 4. 11× 10~(-6)~ 38. 09 × 10~(-6)) and LREE-enriched REE patterns,but the vein calcite cementing galena and sphalerite share obvious signatures with lower total REE concentrations( 1. 52 × 10~(-6)~ 5. 57 × 10~(-6)) and MREE-enriched REE patterns. Significant differences of two kinds of calcite on total REE contents and REEnormalized distribution patterns indicate that their ore-forming fluids are probably different in origin. The carbon and oxygen isotopic compositions also display a distinct difference between lumpy calcite and vein calcite in the studied deposit. The carbon isotopic compositions in vein calcite are lower than those of lumpy calcite,but its oxygen isotopic compositions are obviously higher than the latter. The theoretical modeling reveals that calcite precipitation was causedby CO_2 degassing together with decreasing temperature. In addition,meteoric water also plays a certain role. For the lumpy calcite,its ore-forming fluid was probably magmatic water mixed with about 45% of meteoric water and characterized by HCO_3-as dominate dissolved carbon species in hydrothermal solution,and its δ~(13)C and δ~(18)O values are deduced to be at-4‰ and +5‰,respectively. For the vein calcite,its ore-forming fluid was also magmatic water only mixed with about 10% meteoric water and characterized by H_2CO_3 as the dominate dissolved carbon species,and its δ~(13)C and δ~(18)O values are estimated as-6‰ and +5‰,respectively.
引文
[1]《中国矿床发现史·湖南卷》编委会.中国矿床发现史·湖南卷[M].北京:地质出版社,1996:1-281.
    [2]李能强,彭超.湖南水口山铅锌金银矿床[M].北京:地震出版社,1996:77-90.
    [3]Zeng N S,Izawa E,Motomura Y,et al.Silver minerals and paragenesis in Kangjiawan Pb-Zn-Ag-Au deposit of the Shuikoushan mineral district,Hunan Province,China[J].The Canadian Mineralogist,2000,38(1):11-22.
    [4]刘省三.湖南水口山铅-锌多金属矿田硅化角砾岩体(带)地质特征与成矿关系[J].矿产与地质,2007,21(2):186-191.
    [5]王卿铎,廖凤先,杨焕杰.湖南康家湾金铅锌矿床成矿物化条件的研究[J].中南矿冶学院学报,1992,23(8):254-259.
    [6]Zhang Y H,Lin G,Roberts P,et al.Numerical modelling of deformation and fluid flow in the Shuikoushan district,Hunan Province,South China[J].Ore Geology Reviews,2007,31(1-4):261-278.
    [7]许德如,刘静,陈广浩.湖南常宁县康家湾铅锌金矿硅化角砾岩岩石地球化学特征[J].地质科学,2002,37(3):356-364,342.
    [8]谭建湘,宛克勇.湖南水口山铅锌金银矿床地球化学特征[J].矿产与地质,2008,22(2):125-130.
    [9]左昌虎,缪柏虎,赵增霞,等.湖南常宁康家湾铅锌矿床同位素地球化学研究[J].矿物学报,2014,34(3):351-359.
    [10]李仕能.水口山矿田成因机制新探——介绍水口山浅成低温热液金矿成矿模式[J].矿产与地质,1988,2(2):16-19.
    [11]杨传益.康家湾铅锌矿床的发现及成因[J].地质与勘探,1985,21(5):1-7.
    [12]刘伟.水口山Pb-Zn-Au矿田含矿流体的性质、来源及其环流历程[J].大地构造与成矿学,1994,18(3):209-218.
    [13]Barrat J A,Boulègue J,Tiercelin J J,et al.Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika,East Africa[J].Geochimica et Cosmochimica Acta,2000,64(2):287-298.
    [14]Uysal I T,Zhao J X,Golding S D,et al.Sm-Nd dating and rare-earth element tracing of calcite:implications for fluid-flow events in the Bowen Basin,Australia[J].Chemical Geology,2007,238(1-2):63-71.
    [15]Huang Z L,Li X B,Zhou M F,et al.REE and C-O isotopic geochemistry of calcites from the world-class Huize Pb-Zn deposits,Yunnan,China:Implications for the ore genesis[J].Acta Geologica Sinica,2010,84(3):597-613.
    [16]彭建堂,胡瑞忠,漆亮,等.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学,2002,37(3):277-287.
    [17]彭建堂,胡瑞忠,漆亮,等.锡矿山热液方解石的REE分配模式及其制约因素[J].地质论评,2004,50(1):25-32.
    [18]Kontak D J,Kerrich R.An isotope(C,O,Sr)study of vein gold deposits in the Meguma Terrane,Nova Scotia;implication for source reservois[J].Economic Geology,1997,92(2):161-180.
    [19]Savard M M,Kontak D J.δ13C-δ18O-87Sr/86Sr covariations in ore-stage calcites at and around the Gays River Zn-Pb deposit(Nova Scotia,Canada);evidence for fluid Mixing[J].Economic Geology,1998,93(6):818-833.
    [20]彭建堂,胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评,2001,47(1):34-41.
    [21]Ehya F.The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran:isotope(C,O,S,Pb)geochemistry and ore genesis[J].Mineralogy and Petrology,2014,108(1):123-136.
    [22]毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,2011,85(5):636-658.
    [23]喻亨祥,刘家远.水口山矿田花岗质潜火山杂岩的成因特征[J].大地构造与成矿学,1997,21(1):32-40.
    [24]王岳军,范蔚茗,郭峰,等.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J].中国科学(D缉),2001,31(9):745-751.
    [25]马丽艳,路远发,梅玉萍,等.湖南水口山矿区花岗闪长岩中的锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2006,22(10):2475-2482.
    [26]甄世民,祝新友,李永胜,等.湖南仙人岩与金矿床有关的二长岩锆石U-Pb年龄、Hf同位素及地质意义[J].吉林大学学报(地球科学版),2012,42(6):1740-1756.
    [27]路睿.湖南省常宁市水口山铅锌矿床地质特征及成因机制探讨[D].南京:南京大学(硕士论文),2013.
    [28]Liang Q,Grégoire D C.Determination of trace elements in twenty six Chinese geochemistry reference materials by Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research,2000,24(1):51-63.
    [29]Sun S S,Mc Donough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society,London,Special Publications,1989,42(1):313-345.
    [30]路睿,徐兆文,陆建军,等.水口山铅锌矿成因探讨[J].南京大学学报(自然科学),2013,49(6):732-746.
    [31]郭福生,潘家永,刘林清,等.浙江江山石炭—二叠系碳酸盐岩碳氧同位素特征研究[J].地球化学,2004,33(1):1-8.
    [32]Veizer J,Hoefs J.The nature of O18/O16and C13/C12secular trends in sedimentary carbonate rocks[J].Geochimica et Cosmochimica Acta,1976,40(11):1387-1395.
    [33]Hoefs J.Stable Isotope Geochemistry[M].4th ed.Berlin:Springer,1997:65-168.
    [34]周家喜,黄智龙,周国富,等.黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约[J].地质论评,2010,56(4):513-524.
    [35]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989.
    [36]Lottermoser B G.Rare earth elements and hydrothermal ore formation processes[J].Ore Geology Reviews,1992,7(1):25-41.
    [37]Haas J R,Shock E L,Sassani D C.Rare earth elements in hydrothermal systems:estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J].Geochimica et Cosmochimica Acta,1995,59(21):4329-4350.
    [38]Wood S A.The aqueous geochemistry of the rare-earth elements and yttrium:1.Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J].Chemical Geology,1990,82:159-186.
    [39]Zhong S J,Mucci A.Partitioning of rare earth elements(REEs)between calcite and seawater solutions at 25℃and 1atm,and high dissolved REE concentrations[J].Geochimica et Cosmochimica Acta,1995,59(3):443-453.
    [40]Rimstidt J D,Balog A,Webb J.Distribution of trace elements between carbonate minerals and aqueous solutions[J].Geochimica et Cosmochimica Acta,1998,62(11):1851-1863.
    [41]Chen Y J,Fu S G.Variation of REE patterns in early Precambrian sediments——Theoretical study and evidence from the southern margin of the North China craton[J].Chinese Science Bulletin,1991,36(13):1100-1104.
    [42]Chen Y J,Zhao Y C.Geochemical characteristics and evolution of REE in the early Precambrian sediments:evidences from the southern margin of the North China craton[J].Episodes,1997,20:109-116.
    [43]Ma Y J,Liu C Q.Trace element geochemistry during chemical weathering——as exemplified by the weathered crust of granite,Longnan,Jiangxi[J].Chinese Science Bulletin,1999,44(24):2260-2263.
    [44]何雨旸,赵广涛,赵利,等.巢北地区二叠系栖霞组碳酸盐岩地球化学特征及其古环境意义[J].中国海洋大学学报,2014,44(5):79-88.
    [45]Zheng Y F.Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2:a quantitative evaluation and application to the Kushikino gold mining area in Japan[J].Mineralium Deposita,1990,25(4):246-250.
    [46]Zheng Y F,Hoefs J.Carbon and oxygen isotopic covariations in hydrothermal calcites:theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains,Germany[J].Mineralium Deposita,1993,28(2):79-89.
    [47]郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001,20(1):57-70,85.
    [48]Holland H D,Malinin S D.The solubility and occurrence of non-ore minerals[A].Barnes H L.Geochemistry of Hydrothermal Ore Deposits[M].2nd ed.New York:John Wiley and Sons,1979:461-508.
    [49]Ohmoto H,Goldhaber M B.Sulfur and carbon isotopes[A].Barnes H L.Geochemistry of Hydrothermal Ore Deposits[M].3rd ed.New York:John Wiley and Sons,1997:517-611.
    [50]O’Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].Journal of Chemical Physics,1969,51(12):5547-5558.
    [51]Truesdell A H.Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures:consequences for isotope geochemistry[J].Earth and Planetary Science Letters,1974,23(3):387-396.
    [52]张理刚.成岩成矿理论与找矿[M].北京:北京工业大学出版社,1989:1-200.
    [53]Taylor H P Jr,Frechen J,Degens E T.Oxygen and carbon isotope studies of carbonatites from the Laacher See District,West Germany and the Aln9 District,Sweden[J].Geochimica et Cosmochimica Acta,1967,31(3):407-430.
    [54]Sheppard S M F.Characterization and isotopic variations in natural waters[J].Reviews in Mineralogy and Geochemistry,1986,16(1):165-183.
    (1)湖南有色地质勘查局217队.湖南省常宁市水口山铅锌多金属矿产资源储量核实报告.2011.
    (2)湖南冶金地质勘探217队.湖南省常宁县水口山矿田康家湾铅锌金矿评价地质报告.1982.
    (3)湖南有色地质勘查局217队.湖南省常宁市水口山铅锌矿资源储量核实报告.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700