水产品捕捞机器人耐压壳体优化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal Analysis of Pressure Hull of Underwater Fishing Robot for Aquatic Products
  • 作者:刘义翔 ; 于晓芳 ; 王希贵
  • 英文作者:LIU Yixiang;YU Xiaofang;WANG Xigui;School of Light Industry,Harbin University of Commerce;College of Engineering and Technology,Northeast Forestry University;
  • 关键词:有限元方法 ; 耐压壳体 ; 水下机械 ; 捕捞机器人 ; 优化分析
  • 英文关键词:Finite element method;;pressure hull;;underwater vehicle;;fishing robot;;optimal analysis
  • 中文刊名:SSGC
  • 英文刊名:Forest Engineering
  • 机构:哈尔滨商业大学轻工学院;东北林业大学工程技术学院;
  • 出版日期:2019-03-12 16:18
  • 出版单位:森林工程
  • 年:2019
  • 期:v.35
  • 基金:中央高校基本科研业务费专项资金项目(2572016CB15)
  • 语种:中文;
  • 页:SSGC201902011
  • 页数:4
  • CN:02
  • ISSN:23-1388/S
  • 分类号:73-76
摘要
本文是基于水产品研发的一种水下捕捞机器人,采用有限元分析方法对水下捕捞机器人的耐压壳体厚度进行优化,避免船体承受压力过大而损坏,保证水下机器人的正常航行。船体耐压壳体作为水下捕捞机械的重要结构部件,不仅要满足其稳定性要求,而且要满足水下压力允许范围内的强度要求。优化后的机器人耐压壳体结构更符合水下作业机器人功能要求,总体上减轻机器人的重量,节省材料和成本,为实际工程应用提供可靠的参考数据。
        In the paper,an underwater fishing robot for aquatic products is developed. The finite element analysis method is used to optimize the thickness of the pressure hull of underwater robot,which can prevent hull pressure from being damaged to ensure the normal operation of the underwater vehicle. As an important structural component of underwater fishing machinery,the pressure hull should not only meet the requirements of stability but also require its strength within the allowable range under underwater pressure.The optimized pressure hull structure is more in line with the functional requirements of underwater fishing robots,the weight of the robot overall is reduced,the materials and costs of that are saved,and the reliable reference data for practical forestry engineering applications are provided.
引文
[1]赵树培.水下机器人3D建模与结构优化分析[J].机电工程技术,2016,45(4):18-20.ZHAO S P. 3D modeling technology and structural optimization ofunderwater vehicle[J]. Mechanical&Electrical Engineering Tech-nology,2016,45(4):18-20.
    [2]王艳新,唐文秀,吴函,等.基于多传感器融合技术的智能抢险救灾机器人设计[J].林业机械与木工设备,2018,46(5):17-20.WANG Y X,TANG W X,WU H,et al. Design of intelligent emer-gency rescue robots based on multi-sensor fusion technology[J].Forestry Science&Technology,2018,46(5):17-20.
    [3] KIM A,EUSTICE R M. Real-time visual SLAM for autonomousunderwater hull inspection using visual saliency[J]. IEEE Transac-tions on Robotics,2013,29(3):719-733.
    [4]苗怡然,高良田,梁旭,等.水下航行器耐压壳体参数化设计优化[J].大连海事大学学报,2017,43(2):33-38.MIAO Y R,GAO L T,LIANG X,et al. Parametric optimizationdesign of the pressure hull for automatic underwater vehicle[J].Journal of Dalian Maritime University,2017,43(2):33-38.
    [5]杨岳,何雪浤,水下机器人耐压壳体结构优化[J].机械科学与技术,2016,35(4):614-619.YANG. Y,HE X H,Structural optimization of underwater robotpressure hull[J]. Mechanical Science and Technology for Aero-space Engineering,2016,35(4):614-619.
    [6] KIM A,EUSTICE R M. Pose-graph visual SLAM with geometricmodel selection for autonomous underwater ship hull inspection[C]. IEEE/RSJ International Conference on Intelligent Robots&Systems,IEEE Press,2009:1559-1565.
    [7] ALVAREZ A,BERTRAM V,GUALDESI L. Hull hydrodynamicoptimization of autonomous underwater vehicles operating at snorke-ling depth[J]. Ocean Engineering,2009,36(1):105-112.
    [8]伍莉,徐治平,张涛,等.球形大深度潜水器耐压壳体优化设计[J].船舶力学,2010,14(5):509-515.WU L,XU Z P,ZHANG T,et al. Optimum design of sphericaldeep-submerged pressure hull[J]. Journal of Ship Mechanics,2010,14(5):509-515.
    [9] SARKAR T,SAYER P G,FRASER S M. A study of autonomousunderwater vehicle hull forms using computational fluid dynamics[J]. International Journal for Numerical Methods in Fluids,1997,25(11):1301-1313.
    [10] ZHANG N,ZONG Z. The effect of rigid-body motions on thewhipping response of a ship hull subjected to an underwater bubble[J]. Fluids&Structures,2011,27(8):1326-1336.
    [11]陈炉云,王德禹,基于i SIGHT的环肋圆柱壳动力学优化设计[J].中国舰船研究,2007,2(6):1-3.CHEN L Y,WANG D Y. Dynamic optimization de-sign of ring-stiffened cylindrical shell based on i SIGHT[J]. Chinese Journalof Ship Research,2007,2(6):1-3.
    [12]谢金鑫.基于参数化有限元的潜水器结构优化设计[D].哈尔滨:哈尔滨工程大学,2010.XIE J X. Structural optimization design of underwater vehiclebased on parametric finite element[J]. Harbin:Harbin Engineer-ing University,2010.
    [13] PHILLIPS A B,FURLONG M,TURNOCK S R. The use of com-putational fluid dynamics to assess the hull resistance of conceptautonomous underwater vehicles[C]. Oceans,IEEE,2007.
    [14] CHEN X,WANG P,ZHANG D Y. Surrogate-based multidisci-plinary design optimization of an autonomous underwater vehiclehull[C]. International Symposium on Distributed Computing&Applications to Business,2017.
    [15]杨卓懿,于宪钊,庞永杰,等.基于多目标遗传算法的潜器外形优化设计[J].船舶力学,2011,15(8):874-880.YANG Z Y,YU X Z,PANG Y J,et al. Optimization of submersi-ble shape based on multi-objective genetic algorithm[J]. Journalof Ship Mechanics,2011,15(8):874-880.
    [16] GAO T,WANG Y,PANG Y,et al. Hull shape optimization forautonomous underwater vehicles using CFD[J]. Engineering Ap-plications of Computational Fluid Mechanics,2016,10(1):601-609.
    [17] CHUNG D,HONG S,KIM J. Underwater pose estimation relativeto planar hull surface using stereo vision[C]. Underwater Tech-nology,IEEE,2017.
    [18]马烈. 1000 m轻作业型载人潜水器概念设计[D].哈尔滨:哈尔滨工程大学,2012.MA L. Conceptual design of 1000-meter light operating mannedsubmersible[J]. Harbin:Harbin Engineering University,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700