腺嘌呤所致大鼠肾损伤的蛋白质组变化及其白头翁皂苷B4的调节作用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Proteomic changes in rat kidney injured by adenine and the regulation of anemoside B4
  • 作者:何鹿玲 ; 龚琴 ; 余煊 ; 王木兰 ; 翁莎莎 ; 雷帆 ; 高红伟 ; 罗颖颖 ; 冯育林 ; 杨世林 ; 李俊 ; 杜力军
  • 英文作者:Luling He;Qin Gong;Xuan Yu;Mulan Wang;Shasha Wong;Fan Lei;Hongwei Gao;Yingying Luo;Yulin Feng;Shilin Yang;Jun Li;Lijun Du;Jiangxi University of Traditional Chinese Medicine;State Key Laboratory of Innovative Drugs and Efficient Energy-saving Pharmaceutical Equipment;School of Life Sciences, Tsinghua University;College of Pharmacy, Guangxi University of Chinese Medicine;
  • 关键词:腺嘌呤 ; 慢性肾损伤 ; 蛋白质组学 ; 白头翁皂苷B4 ; 大鼠
  • 英文关键词:Adenine;;Chronic kidney injury;;Proteome;;Anemoside B4;;Rat
  • 中文刊名:XYGZ
  • 英文刊名:中国药学(英文版)
  • 机构:江西中医药大学创新药物与高效节能降耗制药设备国家重点实验室;江西中医药大学;清华大学生命科学学院;广西中医药大学药学院;
  • 出版日期:2019-01-26 16:06
  • 出版单位:Journal of Chinese Pharmaceutical Sciences
  • 年:2019
  • 期:v.28
  • 基金:National Innovative Drugs 13th Five-Year Major Special Project of China(Grant No.2018ZX09301030-002)
  • 语种:英文;
  • 页:XYGZ201901002
  • 页数:11
  • CN:01
  • ISSN:11-2863/R
  • 分类号:16-26
摘要
腺嘌呤常常用于制作慢性肾损伤及其肾间质纤维化的动物模型。除了炎性损伤之外,作为内源性物质的腺嘌呤对肾脏的损害尚未得到充分研究和阐明。为此,我们利用LC-MS/MS技术对腺嘌呤负荷后大鼠肾脏的蛋白质组学进行了分析,并观察了anemoside B4(B4)的作用。结果表明,腺嘌呤与正常组相比可以下调285个基因,上调大鼠肾组织中的164个基因。下调基因主要影响能量代谢的通路,而上调基因则影响炎症反应途径和其它一些代谢途径。B4可以显著逆转下调基因中的40个基因,这些基因涉及线粒体、氧化还原过程、细胞外外泌体、乙酰化和其他信号传导途径。同时,B4可明显抑制由腺嘌呤引起的6个上调基因,主要涉及细胞周期、卵母细胞减数分裂、PI3K-Akt等信号通路。使用实时定量PCR方法对其中一些基因进行mRNA表达,其结果也与蛋白质组学分析结果基本一致。因此可见,由腺嘌呤引起的大鼠肾损伤更复杂,不仅与炎症反应有关,而且对身体各种代谢过程有广泛影响。该工作为全面了解腺嘌呤诱导的肾损伤提供了有价值的线索。
        Adenine is commonly used to establish the animal models for chronic kidney injury and its renal interstitial fibrosis. As an endogenous substance, adenine-induced kidney damage has not yet been fully studied and elucidated, except for inflammatory reaction. Here we analyzed the proteomics of kidney of rats after adenine overloading using LS-MS/MS assay, and observed the role of anemoside B4(B4). The results showed that adenine could down-regulate 285 proteins and up-regulate 164 proteins in rat kidney tissue compared with the normal group. Down-regulated proteins mainly affected related pathways, such as energy metabolism, while up-regulated proteins affected inflammatory response pathways and metabolic pathways. B4 could significantly reverse the down-regulation of about 40 proteins, which were involved in mitochondria, redox processes, extracellular exosomes, acetylation and other signaling pathways. Simultaneously, B4 could inhibit the up-regulation of five proteins caused by adenine, which were involved in cell cycle, oocyte meiosis, PI3 K-Akt and other signaling pathways. Further experimental results of mRNA expression using real-time PCR assay supported the proteomic analysis. Therefore, we proposed that the damage of rat kidney caused by adenine was more complicated, not only with an inflammatory reaction, but also with extensive effects to various metabolic processes in the body. This work provided a valuable clue for comprehensive understanding of adenine-induced renal damage.
引文
[1]Al Za’abi,M.;Al Busaidi,M.;Yasin,J.;Schupp,N.;Nemmar,A.;Ali,B.H.Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration,and the effect of treatment with gum acacia thereon.Am.J.Transl.Res.2015,7,28-38.
    [2]Yokote,S.;Katsuoka,Y.;Yamada,A.;Ohkido,I.;Yokoo,T.Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease.Sci.Rep.2017,7,e14036.
    [3]Ali,B.H.;Cahliková,L.;Opletal,L.;Karaca,T.;Manoj,P.;Ramkumar,A.;Al Suleimani,Y.M.;Al Za’abi,M.;Nemmar,A.;Chocholousova-Havlikova,L.;Locarek,M.;Siatka,T.;Blunden,G.Effect of aqueous extract and anthocyanins of calyces of Hibiscus sabdariffa(Malvaceae)in rats with adenine-induced chronic kidney disease.J.Pharm.Pharmacol.2017,69,1219-1229.
    [4]Zhang,X.Y.;Yang,Z.N.;Li,L.F.;Qiao,Y.H.;Jiao,H.Y.;Miao,C.X.Prevention of injury by resveratrol in a rat model of adenine-induced chronic kidney disease.Trop.J.Pharm.Res.2017,16,2027-2032.
    [5]Diwan,V.;Brown,L.;Gobe,G.C.The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease.J.Functional Foods.2017,33,85-93.
    [6]Ali,B.H.;Al Za''abi,M.;Adham,S.A.;Yasin,J.;Nemmar,A.;Schupp,N.Therapeutic Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats.Cell.Physiol.Biochem.2016,38,248-257.
    [7]Akchurin,O.;Sureshbabu,A.;Doty,S.B.;Zhu,Y.S.;Patino,E.;Cunningham-Rundles,S.;Choi,M.E.;Boskey,A.;Rivella,S.Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease.Am.J.Physiol.Renal Physiol.2016,311,F877-F889.
    [8]Diwan,V.;Brown,L.;Gobe,G.C.Adenine-induced chronic kidney disease in rats.Nephrology.2018,23,5-11.
    [9]Boon,A.C.;Lam,A.K.;Gopalan,V.;Benzie,I.F.;Briskey,D.;Coombes,J.S.;Fassett,R.G.;Bulmer,A.C.Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure.Sci.Rep.2015,5,e15482.
    [10]Franklin,B.S.;Mangan,M.S.;Latz,E.Crystal Formation in Inflammation.Annu.Rev.Immunol.2016,34,173-202.
    [11]Runolfsdottir,H.L.;Palsson,R.;Agustsdottir,I.M.;Indridason,O.S.;Edvardsson,V.O.Kidney disease in adenine phosphoribosyltransferase deficiency.Am.J.Kidney Dis.2016,67,431-438.
    [12]Al Za’abi,M.;Shalaby,A.;Manoj,P.;Ali,B.H.The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.Physiol.Res.2017,66,263-271.
    [13]Zhu,C.Z.;Doyle,K.J.;Nikkel,A.L.;Olsen,L.;Namovic,M.T.;Salte,K.;Widomski,D.;Su,Z.;Donnelly-Roberts,D.L.;Gopalakrishnan,M.M.;McGaraughty,S.Short-term oral gavage administration of adenine induces a model of fibrotic kidney disease in rats.J.Pharmacol.Toxicol.Methods.2018,94,34-43.
    [14]Correa-Costa,M.;Braga,T.T.;Felizardo,R.J.;Andrade-Oliveira,V.;Perez,K.R.;Cuccovia,I.M.;Hiyane,M.I.;Da Silva,J.S.;Camara,N.O.Macrophage trafficking as key mediator of adenine-induced kidney injury.Mediators.Inflamm.2014,2014,e291024.
    [15]Nemmar,A.;Karaca,T.;Beegam,S.;Yuvaraju,P.;Yasin,J.;Ali,B.H.Lung oxidative stress,DNA damage,apoptosis,and fibrosis in adenine-induced chronic kidney disease in mice.Front.Physiol.2017,8,e896.
    [16]Fong,D.;Ullah,M.M.;Lal,J.G.;Abdelkader,A.;Ow,C.P.;Hilliard,L.M.;Ricardo,S.D.;Kelly,D.J.;Evans,R.G.Renal cellular hypoxia in adenine-induced chronic kidney disease.Clin.Exp.Pharmacol.Physiol.2016,43,896-905.
    [17]He,M.;Ouyang,H.;He,M.;Tan,T.;Li,J.;Zhang,X.;Jia,J.;Feng,Y.;Yang,S.Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics,tissue distribution and excretion in the study of anemoside B4,a novel antiviral agent candidate,in rats.Biomed.Chromatogr.2017,31,e3914.
    [18]Yang,L.R.;Meng,X.;Yu,X.J.;Kuang,H.X.Simultaneous determination of anemoside B4,phellodendrine,berberine,palmatine,obakunone,esculin,esculetin in rat plasma by UPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats.J.Pharm.Biomed.Anal.2017,134,43-52.
    [19]Hu,H.H.;Chen,D.Q.;Wang,Y.N.;Feng,Y.L.;Cao,G.;Vaziri,N.D.;Zhao,Y.Y.New insights into TGF-β/Smad signaling in tissue fibrosis.Chem.Biol.Interact.2018,292,76-83.
    [20]Gil,A.;Brod,V.;Awad,H.;Heyman,S.N.;Abassi,Z.;Frajewicki,V.Neutrophil gelatinase-associated lipocalin in a triphasic rat model of adenine-induced kidney injury.Ren.Failure.2016,38,1448-1454.
    [21]Yun,Y.;Gao,T.;Li,Y.;Gao,Z.;Duan,J.;Yin,H.;Duan,W.Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine.Sci.World J.2016,2016,e2695718.
    [22]Lu,X.;Yuan,Z.Y.;Yan,X.J.;Lei,F.;Jiang,J.F.;Yu,X.;Yang,X.W.;Xing,D.M.;Du,L.J.Effects of Angelica Dahurica on obesity and fatty liver in mice.Chin.J.Nat.Med.2016,14,641-652.
    [23]Yu,X.;Wang,X.P.;Lei,F.;Jiang,J.F.;Li,J.;Xing,D.M.;Du,L.J.Pomegranate leaf attenuates lipid absorption in the small intestine in hyperlipidemic mice by inhibiting lipase activity.Chin.J.Nat.Med.2017,15,732-739.
    [24]Wang,X.P.;Yu,X.;Yan,X.J.;Lei,F.;Chai,Y.S.;Jiang,J.F.;Yuan,Z.Y.;Xing,D.M.;Du,L.J.TRPM8 in the negative regulation of TNFαexpression during cold stress.Sci.Rep.2017,7,e45155.
    [25]Huang,D.W.;Sherman,B.T.;Lempicki,R.A.Systematic and integrative analysis of large gene lists using DAVIDbioinformatics resources.Nat.Protoc.2009,4,44-57.
    [26]Huang,D.W.;Sherman,B.T.;Lempicki,R.A.Bioinformatics enrichment tools:Paths toward the comprehensive functional analysis of large gene lists.Nucl.Acids Res.2009,37,1-13.
    [27]Hari,A.;Zhang,Y.F.;Tu,Z.Y.;Detampel,P.;Stenner,M.;Ganguly,A.;Shi,Y.Activation of NLRP3 inflammasome by crystalline structures via cell surface contact.Sci.Rep.2014,4,e7281.
    [28]Davis,B.K.;Wen,H.T.;Ting,J.P.The Inflammasome NLRs in immunity,inflammation,and associated diseases.Annu.Rev.Immunol.2011,29,707-735.
    [29]Shindo,T.;Doi,S.;Nakashima,A.;Sasaki,K.;Arihiro,K.;Masaki,T.TGF-β1 promotes expression of fibrosis-related genes through the induction of histone variant H3.3 and histone chaperone HIRA.Sci.Rep.2018,8,e14060.
    [30]Isaka,Y.Targeting TGF-βsignaling in kidney fibrosis.Inter.J.Mol.Sci.2018,19,e2532.
    [31]Gy?rfi,A.H.;Matei,A.E.;Distler,J.H.W.Targeting TGF-βsignaling for the treatment of fibrosis.Matrix Biology.2018,68-69,8-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700