溢油污染滩涂水体中多环芳烃组成分布及风险
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Composition Distribution and Ecological Risk Assessment of PAHs in Water from Oil Spill to Tidal Marshes
  • 作者:齐晓宝 ; 吴健 ; 王敏 ; 吴建强 ; 谭娟 ; 唐浩 ; 黄沈发
  • 英文作者:QI Xiaobao;WU Jian;WANG Min;WU Jianqiang;TAN Juan;TANG Hao;HUANG Shenfa;School of Environment Science and Engineering,Donghua University;Shanghai Academy of Environmental Science;
  • 关键词:溢油 ; 滩涂 ; 水环境 ; 多环芳烃 ; 生态风险
  • 英文关键词:oil spill;;tidal marshes;;water environment;;polycyclic aromatic hydrocarbons(PAHs);;ecological risk assessment
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:东华大学环境科学与工程学院;上海市环境科学研究院;
  • 出版日期:2017-03-15
  • 出版单位:环境科学与技术
  • 年:2017
  • 期:v.40
  • 基金:上海市科学技术委员会科研计划项目(STCSM-13231203600);; 环科创新项目(CX201205)
  • 语种:中文;
  • 页:FJKS201703028
  • 页数:6
  • CN:03
  • ISSN:42-1245/X
  • 分类号:178-183
摘要
对溢油污染滩涂集中掩埋区域周边水环境进行涨落潮混合采样分析,采用气相色谱质谱联用法检测了16种优控PAHs,分析了其组成分布动态特征,并评价其生态风险。结果表明:∑PAHs浓度范围为ND~148.00 ng/L,平均浓度为50.97 ng/L,远低于我国《生活饮用水卫生国家标准》(GB 5749-2006)规定PAHs总量(2.0μg/L)。集中掩埋应急处置后,滩涂周边水体中PAHs的浓度持续下降,直至12个月后对掩埋污染沉积物二次处置时,水环境中PAHs浓度受扰动影响大幅升高。水环境多环芳烃中共检出萘、苊、芴、菲、蒽、荧蒽、芘等7种单体,其中菲的含量最高,检出率也最高为52%,是水环境中多环芳烃的典型特征单体,与∑PAHs呈显著正相关关系(R2=0.913)。应急处置刚完成时,水环境中检出PAHs以二环(56.6%)和三环(38.2%)为主,但因二环PAHs较易挥发降解,随着时间推移,水环境中检出PAHs以三环(61.2%~65.5%)和四环(34.5%~38.8%)为主,且较难降解的四环PAHs比例越来越高。采用风险系数法计算7种PAHs的风险商值,商值范围为ND~3.80×10~(-4),均远小于风险界值1,PAHs对水生生态系统的风险较低。
        Enough surface-water mixed samples were collected during flood and ebb from the buried region of oil spilling tidal marshes with 16 priority polycyclic aromatic hydrocarbons(PAHs) by using gas chromatography mass spectrometry in hoping to detect their distribution features and address the ecological risk of PAHs to local aquatic ecosystem.The results showed that the concentration of total PAHs ranged from ND ~148.00 ng/L with an average concentration of 50.97 ng/L,which are even lower than those from GB 5749-2006 Drinking Water Health Standard(2.0 μg/L). After emergency settlement,the concentration of PAHs in the water around buried region continued to decline. The concentration of PAHs had a significant increase due to the second treatment and disturbance until the 12 nd month. Seven kinds of individual PAHs were detected in the water,including naphthalene,acenaphthene,fluorene,phenanthrene,anthracene,fluoranthene and pyrene.The concentrations of phenanthrene was the highest. The detection rate of phenanthrene that was typical characteristics individual of PAHs in the water were the highest,up to 52% and have been found significantly positive in the relation with those of PAHs(R2=0.913).The PAHs in the water samples were dominated by 2-ring(56.6%),followed by 3-ring(38.2%)components in the water when emergency settlement was just finished. Because 2-ring PAHs were easily volatilized and degraded over time,the predominant PAHs were by 3-ring(61.2%~65.5%),followed by 4-ring(34.5%~38.8%)components with increased proportion of hardly-degraded 4-ring PAHs gradually. Risk coefficient method were employed to evaluate ecological risks of 7 PAHs. The quotient values ranged from ND to 3.80 ×10~(-4),which were much smaller than 1 with low ecological risks of PAHs to aquatic organisms.
引文
[1]宋泽坤,程和琴,刘昌兴,等.长江口溢油数值模拟及对水源地影响[J].长江流域资源与环境,2013,22(8):1055-1063.
    [2]Silva C,Moreira i,Oliveira O,et al.Spatial distribution and content assessment of total petroleum hydrocarbons in the intertidal zone surface sediment of Todosos Santos Bay,Brazil[J].Environmental Monitoring&Assessment,2014,186(2):1271-1280.
    [3]王传远,贺世杰,李延太,等.中国海洋溢油污染现状及其生态影响研究[J].海洋科学,2009,33(6):57-60.
    [4]陈澎,李颖,余小凤,等.“7.16”大连新港石油管道爆炸事故中的热红外溢油监测[J].环境工程学报,2013,7(2):796-800.
    [5]宫云飞,兰冬东,李冕,等.大连市近岸海域溢油污染事故风险受体脆弱性评价研究[J].海洋开发与管理,2015(10):66-68.
    [6]Reynaud S,Deschaux P.The effects of polycyclic aromatichydrocarbons on the immune system of fish:a review[J].Aquatic Toxicology,2006,77(2):229-238.
    [7]Eiko Koike,Rie Yanagisawa,Hirohisa Takano.Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells[J].Atmospheric Environment,2014(97):529-536.
    [8]Landrum P F,Dupuis W S,Kukkonen J.Toxicokinetics and toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp:examination of equilibrium-partitioning theory and residue-bases effects for assessing hazard[J].Environmental Toxicology&Chemistry,1994,13(11):1769-1780.
    [9]Skarphédinsdóttir H,Ericson G,Svavarsson J,et al.DNAadducts and polycyclic aromatic hydrocarbon(PAH)tissue levels in blue mussels(Mytilus spp.)from Nordic coastal sites[J].Marine Environmental Research,2007,64(4):479-491.
    [10]Engraff M,Solere C,Smith K E,et al.Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods:linking toxic effects to chemical activity[J].Aquatic Toxicology,2011,102(3/4):142-149.
    [11]US Environmental Protection Agency.Drinking Water Standards and Health Advisories Table[R].2007.
    [12]周文敏,傅徳黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4):1-3.Zhou Wenmin,Fu Deqian,Sun Zongguang.Priority control pollutants blacklist in water[J].Environmental Monitoring in China,1990,6(4):1-3.(in Chinese)
    [13]杨建丽,刘征涛,冯流,等.长江口水体中PAHs的基本生态风险特征[J].环境科学研究,2009,22(7):784-787.Yang Jianli,Liu Zhengtao,Feng Liu,et al.Basic ecological risk of PAHs in water of Yangtze River Estuary[J].Research of Environmental Science,2009,22(7):784-787.(in Chinese)
    [14]马安娜,陆健健.长江口崇西湿地生态系统的二氧化碳交换及潮汐影响[J].环境科学研究,2011,24(7):716-721.Ma Anna,Lu Jianjian.Net ecosystem exchange of carbon and tidal effects in Chongxi wetland,Yangtze Estuary[J].Research of Environmental Science,2011,24(7):716-721.(in Chinese)
    [15]张佳蕊,张海燕,陆健健.长江口淡水潮滩芦苇地上与地下部分月生物量变化比较研究[J].湿地科学,2013,11(1):7-12.Zhang Jiarui,Zhang Haiyan,Lu Jianjian.Comparisons of monthly biomass dynamics between aboveground and belowground parts of Phragmitesaus tralis in freshwater tidal flat in Yangtze Estuary[J].Wetland Science,2013,11(1):7-12.(in Chinese)
    [16]吴健,谭娟,王敏,等.某石油污染滩涂沉积物中总石油烃和多环芳烃组成分布特征及源解析[J].安全与环境学报,2016,16(2):121-127.
    [17]冯承莲,夏星辉,周追,等.长江武汉段水体中多环芳烃的分布及来源分析[J].环境科学学报,2007,27(11):1900-1908.
    [18]罗孝俊,陈社军,余梅,等.多环芳烃在珠江口表层水体中的分布与分配[J].环境科学,2008,29(9):2385-2390.
    [19]郭琳,席宏波,杨琦,等.菲的挥发特性及挥发模型研究[J].环境科学与技术,2013,36(S2):15-21.
    [20]吴玲玲,明玺,陈玲,等.长江口水域菲含量及对斑马鱼组织结构的影响[J].环境科学与技术,2007,30(7):13-15.
    [21]Erickson R J,Ankley G T,Defoe D L,et al.Additive toxicity of binary mixtures of phototoxic polycyclic aromatic hydrocarbons to the Oligochaete Lumbriculus variegates[J].Toxicology&Applied Pharmacology,1999,154(1):97-105.
    [22]Solomon K R,Sibley P.New concepts in ecological risk assessment:where do we go from here[J].Mar Pollut Bull,2002,44(4):279-285.
    [23]Logan D T,Wilson H T.An ecological risk assessment method for species exposed to contaminant mixtures[J].Environmental Toxicology&Chemistry,1995,14(2):351-359.
    [24]孟紫强.环境毒理学[M].北京:中国环境科学出版社,2000.
    [25]Soldán P.Toxic risk of surface water pollution-six years of experience[J].Environment International,2003,28(8):677-682.
    [26]孙清芳,冯玉杰,高鹏,等.松花江水中多环芳烃的环境风险评价[J].哈尔滨工业大学学报,2010,42(4):568-572.
    [27]Yang Y,Wangward LA,Li QX,et al.Concentrations,source and risk assessment of polycyclic aromatic hydrocarbons in soils from Midway Atoll,north Pacific Ocean[J].PLo S One,2014,9(1):e86441.
    [28]Qin N,He W,Kong XZ,et al.Ecological risk assessment of polycyclic aromatic hydrocarbons(PAHs)in the water from a large Chinese lake based on multiple indicators[J].Ecological Indicators,2013(24):599-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700