绿洲农田土壤团聚体组成及有机碳和全氮分布对秸秆还田方式的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of composition of soil aggregates and distribution of organic carbonand total nitrogen to straw returning in an oasis area
  • 作者:殷文 ; 郭瑶 ; 陈桂平 ; 冯福学 ; 赵财 ; 于爱忠 ; 樊志龙 ; 胡发龙 ; 柴强
  • 英文作者:YIN Wen;GUO Yao;CHEN Gui-ping;FENG Fu-xue;ZHAO Cai;YU Ai-zhong;FAN Zhi-long;HU Fa-long;CHAI Qiang;Gansu Provincial Key Laboratory of Arid Land Crop Science/College of Agronomy,Gansu Agricultural University;College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University;
  • 关键词:免耕 ; 秸秆还田 ; 团聚体 ; 有机碳 ; 全氮 ; 绿洲农田
  • 英文关键词:no-tillage;;straw returning;;soil aggregates;;organic carbon;;total nitrogen;;oasis farmland
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃省干旱生境作物学重点实验室/甘肃农业大学农学院;甘肃农业大学水利水电工程学院;
  • 出版日期:2019-05-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:v.37;No.174
  • 基金:国家公益性行业(农业)科研项目(201503125-3);; 甘肃农业大学人才专项经费(2017RCZX-02);; 国家科技支撑计划项目(2015BAD22B04)
  • 语种:中文;
  • 页:GHDQ201903019
  • 页数:10
  • CN:03
  • ISSN:61-1088/S
  • 分类号:145-154
摘要
通过田间定位试验,在甘肃干旱灌区,研究了不同小麦秸秆还田方式(NTSS:25~30 cm高茬收割立茬免耕; NTS:25~30 cm高茬秸秆覆盖免耕; TIS:25~30 cm高茬秸秆深翻耕; CT:传统不留茬深翻耕—对照)对农田土壤团聚体及有机碳和全氮分布特征的影响,以期为优化试区种植模式与提高农业可持续发展提供依据。结果表明:免耕秸秆还田处理(NTSS、NTS)≥0.25 mm团聚体含量较高,与CT相比,在0~10、10~20、20~30 cm土层分别提高5.4%与12.5%、13.3%与14.1%、11.1%与19.2%,以NTS提高幅度较大。NTSS、NTS提高了0~10、20~30 cm土壤团聚体的平均重量直径,较CT处理分别提高6.7%与11.6%、7.6%与8.1%,以NTS提高效果最明显。NTSS、NTS处理土壤有机碳和全氮含量均高于CT处理,在0~10、10~20、20~30 cm土层,有机碳含量分别增大8.1%与13.3%、7.4%与11.4%、7.8%与12.8%;全氮含量分别提高14.6%与17.9%、14.5%与17.9%、16.2%与20.5%,同样,以NTS提高土壤有机碳及全氮程度较大。各级别团聚体中有机碳和全氮含量均随土层深度增加而减小,团聚体中有机碳和全氮含量随团聚体直径减小而增加,NTS处理在各土层各级别团聚体均保持较高的土壤有机碳及全氮含量。因此,前茬小麦25~30 cm秸秆覆盖免耕还田是干旱灌区增强土壤团聚体形成、提高土壤有机碳及全氮含量的适宜栽培措施。
        A field experiment was carried out in arid irrigation regions to determine the effects of different wheat straw retention approaches on distribution characteristics of organic carbon and total nitrogen of soil aggregates in farmland, including(i) no tillage with 25 to 30 cm high straw standing(NTSS);(ii) no tillage with 25 to 30 cm high straw covering(NTS);(iii) conventional tillage with 25 to 30 cm high straw incorporation(TIS); and(iv) conventional tillage without straw retention(CT, the control). The results showed that no-tillage with straw retention(i.e., NTSS, NTS) had higher content of soil aggregates ≥ 0.25 mm than that of CT treatment, NTSS increased the content of soil aggregates ≥ 0.25 mm by 5.4%, 13.3%, and 11.1% in 0~10 cm, 10~20 cm, 20~30 cm soil depth, respectively and NTS increased it by 12.5%, 14.1%, and 19.2% in three soil depths, respectively. In particular, NTS treatment had the greatest effect on increasing content of the soil aggregates. NTSS and NTS treatments increased the average weight diameter(MWD) of soil aggregates by 6.7% and 7.6% in 0~10 cm and by 11.6% and 8.1% in 20~30 cm soil, respectively, in comparison to CT. NTS treatment had the highest increasing effect on the MWD. NTSS and NTS treatments improved soil organic carbon and total nitrogen contents; NTSS improved soil organic carbon by 8.1%, 7.4%, and 7.8%, improved total nitrogen by 14.6%, 14.5%, and 16.2% in 0~10 cm, 10~20 cm, and 20~30 cm soil, respectively. Similarly, NTS improved soil organic carbon by 13.3%, 11.4%, and 12.8%, improved total nitrogen by 17.9%, 17.9%, and 20.5% in three soil depths, respectively; and NTS treatment had the highest increasing percentage on soil organic carbon and total nitrogen. The contents of soil organic carbon and total nitrogen in different sized soil aggregates were decreased with increasing soil depth. The contents of soil organic carbon and total nitrogen of soil aggregates were increased with decreasing size. In all, NTS treatment had higher contents of soil organic carbon and total nitrogen in various soil depths and sizes. Therefore, our results indicated that no-tillage with 25 to 30 cm height of straw covering is recommended as the feasible farming method to enhance the formation of soil aggregates and improve the contents of soil organic carbon and total nitrogen in the arid oasis region.
引文
[1] 张心昱,陈利顶,傅伯杰,等.农田生态系统不同土地利用方式与管理措施对土壤质量的影响[J].应用生态学报,2007,18(2):303-309.
    [2] Doran J W,Zeiss M R,Zeiss M R.Soil health and sustainability:managing the biotic component of soil quality[J].Applied Soil Ecology,2000,15(1):3-11.
    [3] Bronick C J,Lal R.Soil structure and management:a review[J].Geoderma,2005,124:3-22.
    [4] 王丽,李军,李娟,等.轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J].应用生态学报,2014,25(3):759-768.
    [5] 高建华,张承中.不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响[J].干旱地区农业研究,2010,28(4):192-196.
    [6] 张翰林,郑宪清,何七勇,等.不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响[J].水土保持学报,2016,30(4):216-220.
    [7] 陈晓芬,李忠佩,刘明,等.不同施肥处理对红壤水稻土团聚体有机碳,氮分布和微生物生物量的影响[J].中国农业科学,2013,46(5):950-960.
    [8] Batjes N H,Sombroek W G.Possibilities for carbon sequestration in tropical and subtropical soils [J].Global Change Biology,1997,3(2):161-173.
    [9] 邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,19(3):24-28.
    [10] Paul B K,Vanlauwe B,Ayuke F,et al.Medium-term impact of tillage and residue management on soil aggregate stability,soil carbon and crop productivity[J].Agriculture,Ecosystems & Environment,2013,164:14-22.
    [11] 殷文,陈桂平,柴强,等.前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响[J].中国农业科学,2016,49(15):2898-2908.
    [12] 于爱忠,黄高宝.保护性耕作对内陆河灌区春季麦田不可蚀性颗粒的影响[J].水土保持学报,2006,20(3):6-9.
    [13] 逯非,王效科,韩冰,等.稻田秸秆还田:土壤固碳与甲烷增排[J].应用生态学报,2010,21(1):99-108.
    [14] 武均,蔡立群,罗珠珠,等.保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响[J].水土保持学报,2014,28(2):112-117.
    [15] 田慎重,王瑜,李娜,等.耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J].生态学报,2013,33(22):7116-7124.
    [16] 孙汉印,姬强,王勇,等.不同秸秆还田模式下水稳性团聚体有机碳的分布及其氧化稳定性研究[J].农业环境科学学报,2012,31(2):369-376.
    [17] Van Bavel C H M.Mean weight-diameter of soil aggregates as a statistical index of aggregation[J].Soil Science Society of American Journal,1949,14:20-23.
    [18] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:25-48.
    [19] 邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报,2006,26(2):364-372.
    [20] 郑子成,李廷轩,张锡洲,等.不同土地利用方式下土壤团聚体的组成及稳定性研究[J].水土保持学报,2009,23(5):228-231.
    [21] 王海霞,孙红霞,韩清芳,等.免耕条件下秸秆覆盖对旱地小麦田土壤团聚体的影响[J].应用生态学报,2012,23(4):1025-1030.
    [22] 李玉洁,王慧,赵建宁,等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报,2015,26(3):939-948.
    [23] Pinheiro E F M,Pereira M G,Anjos L H C.Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil[J].Soil and Tillage Research,2004,77(1):79-84.
    [24] ?imansky V,Tobia?ová E,Chlpík J.Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties,soil structure stability and carbon distribution in water-stable macro-aggregates[J].Soil and Tillage Research,2008,100(1):125-132.
    [25] 武均,蔡立群,齐鹏,等.不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J].中国生态农业学报,2015,23(3):276-284.
    [26] 李景,吴会军,武雪萍,等.长期不同耕作措施对土壤团聚体特征及微生物多样性的影响[J].应用生态学报,2014,25(8):2341-2348.
    [27] Zhang P,Wei T,Jia Z K,et al.Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of Northwest China[J].Plos One,2014,9(3):e92839.
    [28] 罗珠珠,黄高宝,张仁陟,等.长期保护性耕作对黄土高原旱地土壤肥力质量的影响[J].中国生态农业学报,2010,18(3):458-464.
    [29] Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51(4):595-605.
    [30] 马瑞萍,刘雷,安韶山,等.黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J].中国生态农业学报,2013,21(3):324-332.
    [31] Sonnleitner R,Lorbeer E,Schinner F.Effects of straw,vegetable oil and whey on physical and microbiological properties of a chernozem[J].Applied Soil Ecology,2003,22(3):195-204.
    [32] 孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J].中国农业科学,2005,38(9):1841-1848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700