早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Primary Mineral Information and Depositional Models of Relevant Mineral Facies of the Early Precambrian BIF—A Preliminary Review
  • 作者:佟小雪 ; 王长乐 ; 彭自栋 ; 南景博 ; 黄华 ; 张连昌
  • 英文作者:Tong Xiaoxue;Wang Changle;Peng Zidong;Nan Jingbo;Huang Hua;Zhang Lianchang;Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences;Institutes of Earth Science,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Laboratory of Deep Sea Geology and Geochemistry,Institute of Deep Sea Science and Engineering,Chinese Academy of Sciences;Institute of Mineral Resources Research,China Metallurgical Geology Bureau;
  • 关键词:条带状铁建造 ; 矿物成因 ; 原生矿物 ; 沉积相模式
  • 英文关键词:Banded iron formation;;Mineral genesis;;Primary mineral;;Depositional model
  • 中文刊名:DXJZ
  • 英文刊名:Advances in Earth Science
  • 机构:中国科学院矿产资源研究重点实验室中国科学院地质与地球物理研究所;中国科学院地球科学研究院(筹);中国科学院大学;深海地质与地球化学研究室中国科学院深海科学与工程研究所;中国冶金地质总局矿产资源研究院;
  • 出版日期:2018-02-10
  • 出版单位:地球科学进展
  • 年:2018
  • 期:v.33;No.280
  • 基金:国家自然科学基金项目“晚太古代清原绿岩带BIF与VMS矿床的成因联系及沉积环境”(编号:41572076);; 国家自然科学基金青年科学基金项目“霍邱李老庄BIF矿区磁铁矿—菱镁矿组合成因机制研究”(编号:41602097)资助~~
  • 语种:中文;
  • 页:DXJZ201802004
  • 页数:14
  • CN:02
  • ISSN:62-1091/P
  • 分类号:42-55
摘要
条带状铁建造(BIF)原生矿物组成有助于约束其沉积相和沉积环境,当前主要认为三价铁氢氧化物或铁硅酸盐微粒(主要成分为铁蛇纹石或黑硬绿泥石)可能是BIF原生矿物的主要成分,在后期成岩或变质作用过程中转变为赤铁矿、磁铁矿、菱铁矿等矿物。根据BIF的矿物组合可将其沉积相划分为氧化物相、硅酸盐相和碳酸盐相。通过沉积地层学和地球化学等方法研究,以古元古代大氧化事件为标志将沉积相总结为"缺氧还原"和"分层海洋"2种相模式:大氧化事件前,古海洋整体处于缺氧还原环境,BIF沉积相从远岸到近岸呈赤铁矿相—磁铁矿相—碳酸盐相分布,如南非West Rand群BIF(2.96~2.78 Ga)和Kuruman BIF(约2.46 Ga);大氧化事件期间及之后,古海洋上部氧化、下部还原,BIF沉积相与之前截然相反,从远岸到近岸呈碳酸盐相—磁铁矿相—赤铁矿相分布,如中国袁家村BIF(2.2~2.3 Ga)和加拿大Sokoman铁建造(约1.88 Ga)。总体看来,只有特定的沉积环境才能形成这种特殊的地质历史上不再重复出现的沉积建造,而原生矿物组成的甄别和推导、沉积相的形成机制、BIF沉淀条件的准确限定和微生物活动与BIF的关联等问题是推测古海洋环境的关键所在,也是目前亟待解决的问题。
        The primary mineral compositions of BIF are regarded as ferric oxyhydroxide or iron silicate nanop-articles( mainly greenalite and stilpnomelane) whichcan transform into minerals like hematite,magnetite and siderite. On the basis of predominant iron minerals,three distinctive sedimentary facies are recognized in BIF: oxide facies,silicate facies and carbonate facies. Marked by the Great Oxidation Event( GOE,2.4 ~ 2.2 Ga),sedimentary facies can be divided into two models: "anoxic and reducing"model and "stratified ocean"model. The ancient ocean was anoxic and reducing before GOE,and under this circumstance,BIF was distributed from the distal to proximal zones transforming from hematite facies through magnetite facies to carbonate facies,such as West Rand Group BIF( 2.96 ~ 2.78 Ga) and Kuruman BIF( ~ 2.46 Ga) in south Africa. However,the ancient ocean was a stratified ocean during and after GOE,which means that shallow seawater was oxidizing while deeper seawater was reducing,leading to an opposite sedimentary facies distribution compared to the former one: BIF was distributed from the distal to proximal zones transforming from carbonate facies through magnetite facies to hematite facies,such as Yuanjiacun BIF in China( ~ 2.3 Ga) and Sokoman iron formation in Canada( ~ 1.88 Ga). Overall,BIF is an unrepeatable formation in geological history,which can only form in specific sedimentary environment. The key point to speculate the paleo-ocean environment,namely the problems to be solved at the moment,is to identify and derive the primary mineral compositions,to make sure the genetic mechanism of sedimentary facies especially silicate facies,to restrict the sedimentary conditions and to study microbial activities contacting with BIF.
引文
[1]James H L.Sedimentary facies of iron-formation[J].Economic Geology,1954,49(3):235-293.
    [2]James H L.Distribution of banded Iron-formation in space and time[J].Developments in Precambrian Geology,1983,6:471-490.
    [3]Trendall A F.The significance of iron-formation in the precambrian stratigraphic record[M]∥Altermann W,Corcoran P L,eds.Precambrian Sedimentary Environments:A Modern Approach to Ancient Depositional Systems.Oxford,UK:Blackwell Publishing Ltd.,2002.
    [4]Huston D L,Logan G A.Barite,BIFs and bugs:Evidence for the evolution of the Earth’s early hydrosphere[J].Earth and Planetary Science Letters,2004,220(1/2):41-55.
    [5]Klein C.Some Precambrian Banded Iron-Formations(BIFs)from around the world:Their age,geologic setting,mineralogy,metamorphism,geochemistry,and origin[J].American Mineralogist,2005,90(10):1 473-1 499.
    [6]Bekker A,Slack J F,Planavsky N,et al.Iron formation:The sedimentary product of a complex interplay among mantle,tectonic,oceanic and biospheric processes[J].Economic Geology,2010,105:467-508.
    [7]Wang Changle,Zhang Lianchang,Liu Li,et al.Research progress of Precambrian iron formations abroad and some problems deserving further discussion[J].Mineral Deposits,2012,31(6):1 311-1 325.[王长乐,张连昌,刘利,等.国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J].矿床地质,2012,31(6):1 311-1 325.]
    [8]Zhang Lianchang,Zhai Mingguo,Wan Yusheng,et al.Study of the Precambrian BIF-iron deposits in the North China craton:Progresses and questions[J].Acta Petrologica Sinica,2012,28(11):3 431-3 445.[张连昌,翟明国,万渝生,等.华北克拉通前寒武纪BIF铁矿研究:进展与问题[J].岩石学报,2012,28(11):3 431-3 445.]
    [9]Haugaard R,Frei R,Stendal H,et al.Petrology and geochemistry of the~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks,West Greenland:Source characteristics and depositional environment[J].Precambrian Research,2013,229:150-176.
    [10]Rasmussen B,Krapez B,Meier D B.Replacement origin for hematite in 2.5 Ga banded iron formation:Evidence for postdepositional oxidation of iron-bearing minerals[J].Geological Society of America Bulletin,2014,126(3/4):438-446.
    [11]Raye U,Pufahl P K,Kyser T K,et al.The role of sedimentology,oceanography and alteration on theδ56Fe value of the Sokoman Iron Formation,Labrador Trough,Canada[J].Geochimica et Cosmochimica Acta,2015,164:205-220.
    [12]Sun S,Konhauser K O,Kappler A,et al.Primary hematite in Neoarchean to Paleoproterozoic oceans[J].Geological Society of America Bulletin,2015,127(5/6):850-861.
    [13]Rasmussen B,Muhling J R,Suvorova A,et al.Dust to dust:Evidence for the formation of“primary”hematite dust in banded iron formations via oxidation of iron silicate nanoparticles[J].Precambrian Research,2016,284:49-63.
    [14]Li Y L,Konhauser K O,Zhai M G.The formation of magnetite in the early Archean oceans[J].Earth and Planetary Science Letters,2017,466:103-114.
    [15]Gross G A.A classification of iron formations based on depositional environments[J].Canadian Mineralogist,1980,18(1):215-222.
    [16]Li Yanhe,Hou Kejun,Wan Defang,et al.A compare geochemistry study for Algoma-and Superior-type banded iron formations[J].Acta Petrologica Sinica,2012,28(11):3 513-3 519.[李延河,侯可军,万德芳,等.Algoma型和Superior型硅铁建造地球化学对比研究[J].岩石学报,2012,28(11):3 513-3 519.]
    [17]Klein C,Beukes N J.Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada[J].Economic Geology,1993,88(3):542-565.
    [18]Klein C,Ladeira E A.Geochemistry and mineralogy of neoproterozoic banded iron-formations and some selected,siliceous manganese formations from the Urucum district,Mato Crosso Do Sul,Brazil[J].Economic Geology,2004,99(6):1 233-1 244.
    [19]Basta F F,Maurice A E,FontbotéL,et al.Petrology and geochemistry of the Banded Iron Formation(BIF)of Wadi Karim and Um Anab,Eastern Desert,Egypt:Implications for the origin of Neoproterozoic BIF[J].Precambrian Research,2011,187(3):277-292.
    [20]Li Houmin,Wang Denghong,Li Lixing,et al.Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J].Geology in China,2012,39(3):559-580.[李厚民,王登红,李立兴,等.中国铁矿成矿规律及重点矿集区资源潜力分析[J].中国地质,2012,39(3):559-580.]
    [21]Cox G M,Halverson G P,Minarik W G,et al.Neoproterozoic iron formation:An evaluation of its temporal,environmental and tectonic significance[J].Chemical Geology,2013,362(1):232-249.
    [22]Hou Kejun.Formation Mechanism of Different Types of Banded Iron Formations of China:Constraints from Iron,Silicon,Oxygen and Sulfur Isotopes China[D].Beijing:University of Geosciences,2014.[侯可军.我国不同类型条带状破铁建造形成机制的铁硅氧硫同位素地球化学制约[D].北京:中国地质大学,2014.]
    [23]Krape6 B,Barley M E,Pickard A L.Hydrothermal and resedimented origins of the precursor sediments to banded iron formation:Sedimentological evidence from the early Palaeoproterozoic Brockman Supersequence of Western Australia[J].Sedimentology,2003,50(5):979-1 011.
    [24]Rasmussen B,Meier D B,Krapez B,et al.Iron silicate microgranulesas precursor sediments to 2.5-billion-year-old banded iron formations[J].Geology,2013,41(4):435-438.
    [25]Rasmussen B,Krapez B,Muhling J R.Hematite replacement of iron-bearingprecursor sediments in the 3.46-b.y.-old Marble Bar Chert,Pilbara craton,Australia[J].Geological Society of America Bulletin,2014,126(9/10):1 245-1 258.
    [26]Wang Changle,Zhang Lianchang,Lan Caiyun,et al.Analysis of sedimentary facies and depositional environment of the Yuanjiacun banded iron formation in the Lüliang area,Shanxi Province[J].Acta Petrologica Sinica,2015,31(6):1 671-1 693.[王长乐,张连昌,兰彩云,等.山西吕梁袁家村条带状铁建造沉积相与沉积环境分析[J].岩石学报,2015,31(6):1 671-1 693.]
    [27]Zhang Qiusheng.Geology and Metallogeny of the Early Precambrain in China[M].Changchun:Jinlin People’s Publishing House,1984.[张秋生.中国早前寒武纪地质及成矿作用[M].长春:吉林人民出版社,1984.]
    [28]Wang C L,Konhauser K O,Zhang L C.Depositional environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province,China[J].Economic Geology,2015,110(6):1 515-1 539.
    [29]Sun S,Li Y L.Geneses and evolutions of iron-bearing minerals in banded iron formations of>3760 to ca.2200 million-year-old:Constraints from electron microscopic,X-ray diffraction and M9ssbauer spectroscopic investigations[J].Precambrian Research,2017,289:1-17.
    [30]Siever R.The silica cycle in the Precambrian[J].Geochimica et Cosmochimica Acta,1992,56(8):3 265-3 272.
    [31]Konhauser K O,Amskold L,Lalonde S V,et al.Decoupling photochemical Fe(II)oxidation from shallow-water BIF deposition[J].Earth and Planetary Science Letters,2007,258(1/2):87-100.
    [32]Garrels R M.A model for the deposition of the microbanded Precambrian iron formations[J].American Journal of Science,1987,287:81-106.
    [33]Posth N R,Hegler F,Konhauser K O,et al.Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans[J].Nature Geoscience,2008,1(10):703-708.
    [34]Ewers W E.Chemical factors in the deposition and diagenesis of banded iron-formation[C]∥Trendall A F,Morris R C,eds.Banded Iron-Formation:Facts and Problems.Amsterdam:Elsevier,1983:491-512.
    [35]Fischer W W,Knoll A H.An iron shuttle for deep-water silica in Late Archean and early Paleoproterozoic iron formation[J].Geological Society of America Bulletin,2009,121(1/2):222-235.
    [36]Delvigne C,Cardinal D,Hofmann A,et al.Stratigraphic changes of Ge/Si,REE+Y and silicon isotopes as insights into the deposition of a Mesoarchean banded iron formation[J].Earth and Planetary Science Letters,2012,355/356:109-118.
    [37]Pickard A L,Barley M E,Krape6 B.Deep-marine depositional setting of banded iron formation:Sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia[J].Sedimentary Geology,2004,170(1/2):37-62.
    [38]Ayres D E.Genesis of iron-bearing minerals in banded iron formation mesobands in the Dales Gorge Member,Hamersley Group,Western Australia[J].Economic Geology,1972,67(8):1 214-1 233.
    [39]Li Y L,Konhauser K O,Kappler A,et al.Experimental lowgrade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations[J].Earth and Planetary Science Letters,2012,361(1):229-237.
    [40]Taitel-Goldman N,Singer A.Synthesis of clay-sized iron oxides under marine hydrothermal conditions[J].Clay Minerals,2002,37(4):719-731.
    [41]Ahn J H,Buseck P R.Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation[J].Science,1990,250(4 977):111-113.
    [42]Morris R C.Genetic modelling for banded iron-formation of the Hamersley Group,Pilbara Craton,Western Australia[J].Precambrian Research,1993,60(1):243-286.
    [43]Schwertmann U,Murad E.Effect of p H on the formation of goethite and hematite from ferrihydrite[J].Clays and Clay Minerals,1983,31(4):277-284.
    [44]Li Y L,Konhauser K O,Cole D R,et al.Mineral ecophysiological data provide growing evidence for microbial activity in banded iron formations[J].Geology,2011,39(8):707-710.
    [45]Ohmoto H.Nonredox transformations of magnetite-hematite in hydrothermal systems[J].Economic Geology,2003,98(1):157-161.
    [46]Pecoits E,Gingras M K,Barley M E,et al.Petrography and geochemistry of the Dales Gorge banded iron formation:Paragenetic sequence,source and implications for palaeo-ocean chemistry[J].Precambrian Research,2009,172(1):163-187.
    [47]Lovley D R.Dissimilatory metal reduction[J].Annual Reviews in Microbiology,1993,47(47):263-290.
    [48]Frost C D,von Blankenburg F,Schoenberg R,et al.Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation[J].Contributions to Mineralogy and Petrology,2007,153(2):211-235.
    [49]Johnson C M,Beard B L,Klein C,et al.Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis[J].Geochimica et Cosmochimica Acta,2008,72(1):151-169.
    [50]Nealson K H,Myers C R.Iron reduction by bacteria:A potential role in the genesis of banded iron formations[J].American Journal of Science,1990,290(1):35-45.
    [51]French B M.Stability relations of siderite(Fe CO3)in the system Fe-C-O[J].American Journal of Science,1971,271(1):37-78.
    [52]Koziol A M.Experimental determination of siderite stability and application to Martian Meteorite ALH84001[J].American Mineralogist,2004,89(2/3):294-300.
    [53]Knauth L P.Temperature and salinity history of the Precambrian ocean:Implications for the course of microbial evolution[J].Palaeogeography Palaeoclimatology Palaeoecology,2005,219(1/2):53-69.
    [54]Bau M,Dulski P.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge:Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J].Chemical Geology,1999,155(1/2):77-90.
    [55]Heimann A,Johnson C M,Beard B L,et al.Fe,C,and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in~2.5 Ga marine environments[J].Earth and Planetary Science Letters,2010,294(1/2):8-18.
    [56]Klein C,Beukes N J.Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup,South Africa[J].Economic Geology,1989,84(7):1 733-1 774.
    [57]Kaufman A J,Hayes J M,Klein C.Primary and diagenetic controls of isotopic compositions of iron-formation carbonates[J].Geochimica et Cosmochimica Acta,1990,54(12):3 461-3 473.
    [58]Bolhar R,Van Kranendonk M J,Kamber B S.Trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group,Pilbara Craton—Formation from hydrothermal fluids and shallow seawater[J].Precambrian Research,2005,137(1):93-114.
    [59]Fischer W W,Schroeder S,Lacassie J P,et al.Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal craton,South Africa[J].Precambrian Research,2009,169(1/4):15-27.
    [60]Liu L,Zhang L C,Dai Y P.Formation age and genesis of the banded iron formations from the Guyang Greenstone Belt,Western North China Craton[J].Ore Geology Reviews,2014,63(1):388-404.
    [61]Teutsong T,Bontognali T R R,Ndjigui P D,et al.Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex(Congo craton),Southern Cameroon:Implications for its origin[J].Ore Geology Reviews,2017,80:267-288.
    [62]Shen Baofeng,Luo Hui,Han Guogang,et al.Archean Geology and Metallization in Northern Liaoning Province and Southern Jilin Province[M].Beijing:Geological Publishing House,1994.[沈保丰,骆辉,韩国刚,等.辽北—吉南太古宙地质及成矿[M].北京:地质出版社,1994.]
    [63]Rasmussen B,Krapez B,Muhling J R,et al.Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s frst iron age[J].Geology,2015,43(4):303-306.
    [64]Tosca N J,Guggenheim S,Pufahl P K.An authigenic origin for Precambrian greenalite:Implications for iron formation and the chemistry of ancient seawater[J].Geological Society of America Bulletin,2016,128(3/4):511-530.
    [65]Haugaard R,Pecoits E,Lalonde S,et al.The Joffre banded iron formation,Hamersley Group,Western Australia:Assessing the palaeoenvironment through detailed petrology and chemostratigraphy[J].Precambrian Research,2016,273(3):12-37.
    [66]Konhauser K O,Hamade T,Morris R C,et al.Could bacteria have formed the Precambrian banded iron formations?[J].Geology,2002,30(12):1 079-1 082.
    [67]Beukes N J,Gutzmer J.Origin and paleoenvironmental signifcance of major iron formations at the Archean-Paleoproterozoic boundary:Reviews[J].Economic Geology,2008,15:5-47.
    [68]Li Y L.Micro-and nanobands in Late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions[J].Earth and Planetary Science Letters,2014,391(2):160-170.
    [69]Lascelles D F.Black smokers and density currents:A uniformitarian model for the genesis of banded iron-formations[J].Ore Geology Reviews,2007,32(1/2):381-411.
    [70]Alibert C,Mc Culloch M T.Rare earth element and Nd isotopic compositions of the banded iron-formations and associated shales from Hamersley,Western Australia[J].Geochimica et Cosmochimica Acta,1993,57(1):187-204.
    [71]Halevy I,Alesker M,Schuster E M.A key role for green rust in the Precambrian oceans and the genesis of iron formations[J].Nature Geoscience,2017,10:135-139.
    [72]Anbar A D,Rouxel O.Metal stable isotopes in paleoceanography[J].Annual Review of Earth and Planetary Sciences,2007,35(1):717-746.
    [73]Planavsky N,Bekker A,Rouxel O J,et al.Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formationsrevisited:New perspectives on the significance and mechanisms of deposition[J].Geochimica et Cosmochimica Acta,2010,74(22):6 387-6 405.
    [74]Li Zhihong,Zhu Xiangkun,Tang Suohan,et al.Characteristics of rare earth elements and geological significations of BIFs from Jidong,Wutai and Lüliang area[J].Geoscience,2010,24(5):840-846.[李志红,朱祥坤,唐索寒,等.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义[J].现代地质,2010,24(5):840-846.]
    [75]Shen Qihan,Song Huixia,Yang Chonghui,et al.Petrochemical characteristics and geological significations of banded iron formations in the Wutai Mountain of Shanxi and Qian’an of eastern Hebei[J].Acta Petrologica et mineralogical,2011,30(2):161-171.[沈其韩,宋会侠,杨崇辉,等.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J].岩石矿物学杂志,2011,30(2):161-171.]
    [76]Liu Lei,Yang Xiaoyong.Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui Province and their metallogenic significance:Taking the Bantaizi and Zhouyoufang deposits as examples[J].Acta Petrologica Sinica,2013,29(7):2 551-2 566.[刘磊,杨晓勇.安徽霍邱BIF铁矿地球化学特征及其成矿意义:以班台子和周油坊矿床为例[J].岩石学报,2013,29(7):2 551-2 566.]
    [77]Yao Tong,Li Houmin,Yang Xiuqing,et al.Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅱ.Characteristics of rare earth elements[J].Acta Petrologica Sinica,2014,30(5):1 239-1 252.[姚通,李厚民,杨秀清,等.辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征[J].岩石学报,2014,30(5):1 239-1 252.]
    [78]Cabral A R,Lehmann B,Gomes A A S,et al.Episodic negative anomalies of cerium at the depositional onset of the 2.65 Ga Itabira iron formation,Quadriltero Ferrífero of Minas Gerais,Brazil[J].Precambrian Research,2016,276:101-109.
    [79]Wang C L,Zhang L C,Dai Y P,et al.Source characteristics of the 2.5 Ga Wangjiazhuang banded iron formation from the Wutai greenstone belt in the North China Craton:Evidence from neodymium isotopes[J].Journal of Asian Earth Sciences,2014,93:288-300.
    [80]De Carlo E H,Green W J.Rare earth elements in the water column of Lake Vanda,Mc Murdo Dry Valleys,Antarctica[J].Geochimica et Cosmochimica Acta,2002,66(8):1 323-1 333.
    [81]Pufahl P K,Hiatt E E.Oxygenation of the Earth’s atmosphere-ocean system:A review of physical and chemical sedimentologic responses[J].Marine and Petroleum Geology,2012,32(1):1-20.
    [82]Satkoski A M,Beukes N J,Li W,et al.A redox-stratified ocean3.2 billion years ago[J].Earth and Planetary Science Letters,2015,430:43-53.
    [83]Groves D I,Phillips N,Ho S E,et al.Craton-scale distribution of Archean greenstone gold deposits:Predictive capacity of the metamorphic model[J].Economic Geology,1987,82(8):2 045-2 058.
    [84]Bekker A,Krape6 B,Slack J F,et al.Iron formation:The sedimentary product of a complex interplay among mantle,tectonic,oceanic,and biospheric processes—A reply[J].Economic Geology,2012,107(2):379-380.
    [85]Smith A J,Beukes N J,Gutzmer J.The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup,South Africa[J].Economic Geology,2013,108(1):111-134.
    [86]Kappler A,Pasquero C,Konhauser K O,et al.Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J].Geology,2005,33(11):865-868.
    [87]K9hler I,Konhauser K O,Papineau D,et al.Biological carbon precursor to diagenetic siderite with spherical structures in iron formations[J].Nature Communications,2013,4(2):1 741.
    [88]Huang Ke,Zhu Mingtian,Zhang Lianchang,et al.LA-ICP-MS analysis of magnetite and application in genesis of mineral deposit[J].Advances in Earth Science,2017,32(3):262-275.[黄柯,朱明田,张连昌,等.磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J].地球科学进展,2017,32(3):262-275.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700