铝合金板件环槽铆钉搭接连接受剪性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on shearing behavior of lockbolted lap connection for aluminum alloy plates
  • 作者:邓华 ; 陈伟刚 ; 白光波 ; 董石麟
  • 英文作者:DENG Hua;CHEN Weigang;BAI Guangbo;DONG Shilin;Spatial Structures Research Center,Zhejiang University;Zhejiang Provincial Key Laboratory of Spatial Structures,Zhejiang University;
  • 关键词:铝合金结构 ; 环槽铆钉 ; 搭接连接 ; 静力试验 ; 受剪性能 ; 破坏模式
  • 英文关键词:aluminum alloy structure;;lockbolt;;lap connection;;static test;;shearing behavior;;failure mode
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:浙江大学空间结构研究中心;浙江大学浙江省空间结构重点实验室;
  • 出版日期:2016-01-08 12:28
  • 出版单位:建筑结构学报
  • 年:2016
  • 期:v.37
  • 语种:中文;
  • 页:JZJB201601019
  • 页数:7
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:147-153
摘要
针对工程中常用的铝合金板件环槽铆钉搭接连接,进行了受剪性能的静力试验。通过拉伸试验测得铝板用6061-T6铝材和铆钉用304HC不锈钢材的物理参数,测定了环槽铆钉的预紧力。试验中获得了12个单铆钉搭接连接试件的荷载-位移曲线和极限荷载,分析了其破坏模式及铆钉孔径、端距、边距等参数的影响。结果表明:试件的破坏形式有环槽铆钉剪切破坏、板件顶端纵向撕裂破坏与侧边横向撕裂破坏3种,控制铆钉孔端、边距尺寸能避免后两种破坏;环槽铆钉预紧力在板件间产生的摩擦力有限,因此该搭接连接应属于承压型连接;铆钉与孔壁间的间隙最终会因板件间的相对滑移而致密,故过大的铆钉孔径将造成大的残余变形,但对承载力的影响有限;剪力作用下节点的荷载-位移曲线早期有较明显弹性段,可取其弹性段的末端荷载值作为受剪承载力设计值,极限荷载和该承载力设计值的比值约为2.3。
        Static tests were carried out to study the shearing behavior of the lockbloted lap connections which are normally used for aluminum alloy plates. Mechanical parameters of the 6061-T6 aluminum and the 304 HC stainless steel lockbolt were obtained by tensile tests. The pretension in lockbolt was also determined. The load-displacement curves as well as bearing capacities of 12 lap connections with single lockbolt were further investigated by tensile tests.The failure modes were analyzed with emphasis on the influences of aperture,end distance and edge distance of bolt hole. The test results reveal that three failure modes exist for this kind of lap connection,including the shearing failure of lockbolt,end fracture failure of plate and the side fracture failure of plate. The last two failure modes,however,can be avoided by controlling the end distance or edge distance of bolt hole. The pretension of lockbolt provides very limited friction force between plates,so this kind of lap connection actually works in a bearing manner. The gap between the lockbolt and its hole wall finally leads to a relative sliding between two plates,thus oversized bolt hole will cause large residual deformation,even though its influence on the ultimate bearing capacity is limited. There is an obvious early elastic stage in the load-displacement curve of the connection under shear force. It indicates that the terminal value of elastic stage can be adopted as the design bearing capacity of the connection. In this case,the ratio of the bearing capacity to the design bearing capacity is about 2. 3.
引文
[1]王元清,袁焕鑫,石永久,等.铝合金板件螺栓连接承压强度试验与计算方法[J].四川大学学报(工程科学版),2011,43(5):203-208.(WANG Yuanqing,YUAN Huanxin,SHI Yongjiu,et al.Experiments and computational method on bearing capacity of bolted joint for aluminum alloy sheets[J].Journal of Sichuan University(Engineering Science Edition),2011,43(5):203-208.(in Chinese))
    [2]马炳成,杨联萍,钱若军.铝合金结构连接的滑移破坏机理[C]//第六届全国现代结构工程学术研讨会论文集.天津:天津大学,2006:1222-1227.(MA Bingcheng,YANG Lianping,QIAN Ruojun.Sliding failure mechanism of aluminum alloy joints[C]//Proceeding of 6th National Conference of Modern Structural Engineering.Tianjing:Tianjin University,2006:1222-1227.(in Chinese))
    [3]杨联萍,韦申,张其林.铝合金空间网格结构研究现状及关键问题[J].建筑结构学报,2013,34(2):1-19.(YANG Lianping,WEI Shen,ZHANG Qilin.Aluminum reticulated spatial structures:state of the art and key issues[J].Journal of Building Structures,2013,34(2):1-19.(in Chinese))
    [4]GB 50429—2007铝合金结构设计规范[S].北京:中国计划出版社,2007.(GB 50429—2007 Code for design of aluminum structures[S].Beijing:China Planning Press,2007.(in Chinese))
    [5]EN1999 Eurocode 9:design of aluminum structures:part 1-1:general structural rules[S].Brussels,Belgium:CEN,2007.
    [6]AS/NZS 1664 Aluminum structures[S].Sydney:Australia Standards,1997.
    [7]The Aluminum Association.Aluminum design manual[S].Arlington,Virginia:The Aluminum Association,2010.
    [8]Randolph Kissell J,Ferry Robert L.Aluminum structures:a guide to their specifications and design[S].New York:John Wiley&Sons,2002:255-257.
    [9]沈祖炎,郭小农,李元齐.铝合金结构研究现状简述[J].建筑结构学报,2007,28(6):100-109.(SHEN Zuyan,GUO Xiaonong,LI Yuanqi.State of the arts of research on aluminum alloy structures[J].Journal of Building Structures,2007,28(6):100-109.(in Chinese))
    [10]Guo X,Xiong Z,Luo Y,et al.Experimental investigation on the semi-rigid behaviour of aluminium alloy gusset joints[J].Thin-Walled Structures,2015,87:30-40.
    [11]GB/T 228.1—2010金属材料拉伸试验:第1部分:室温试验方法[S].北京:中国标准出版社,2010.(GB/T 228.1—2010 Metallic materials:tensile testing:part 1:method of test at room temperature[S].Beijing:China Standard Press,2010.(in Chinese))
    [12]谭金涛,尹昌洪,曹璐,等.重庆国际博览中心铝合金屋面设计[J].钢结构,2013,28(3):32-35.(TAN Jintao,YIN Changhong,CAO Lu,et al.The design of aluminum alloy roof of Chongqing International EXPO Center[J].Steel Construction,2013,28(3):32-35.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700