6061铝基体上镍涂层热处理过程中Ni-Al金属间化合物的形成机理(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation mechanisms of Ni-Al intermetallics during heat treatment of Ni coating on 6061 Al substrate
  • 作者:Mohsen ; ADABI ; Ahmad ; Ali ; AMADEH
  • 英文作者:Mohsen ADABI;Ahmad Ali AMADEH;School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran;Department of Metallurgy and Materials Engineering, Faculty of Engineering,Roudehen Branch, Islamic Azad University;
  • 关键词:Ni-Al金属间化合物 ; 电沉积 ; 热处理 ; 形成机理 ; 生长动力学
  • 英文关键词:Ni-Al intermetallics;;electrodeposition;;heat treatment;;formation mechanism;;growth kinetics
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran;Department of Metallurgy and Materials Engineering, Faculty of Engineering,Roudehen Branch, Islamic Azad University;
  • 出版日期:2015-12-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2015
  • 期:v.25
  • 语种:英文;
  • 页:ZYSY201512013
  • 页数:8
  • CN:12
  • ISSN:43-1239/TG
  • 分类号:110-117
摘要
采用电沉积方法在Al基体上沉积Ni制备Ni-Al扩散偶,并研究扩散偶中Al3Ni和Al3Ni2的形成机理和生长动力学。在6061铝基体上采用直流电沉积方法制备20μm厚的Ni涂层。然后在Ar气气氛下,样品在450,500和550°C下热处理不同时间。采用扫描电子显微镜、能谱仪和X射线衍射仪对金属间化合物进行表征。结果表明,Ni-Al金属间化合物的形成可分为两个重要步骤。首先,金属间化合物在不同位置侧面生长,形成连续金属间化合物层;其次,连续金属间化合物层在垂直于界面方向继续生长。随着金属间化合物厚度的增长,Al3Ni和Al3Ni2等反应产物将与基体发生分离。Al是Al3Ni生长的主要扩散元素,而Ni是Al3Ni2生长的主要扩散元素。Al3Ni和Al3Ni2相的生长动力学遵循抛物线方程。
        The formation mechanisms and growth kinetics of Al3 Ni and Al3Ni2 in Ni-Al diffusion couple prepared by electrodeposition of Ni on Al substrate were investigated. The nickel coating with 20 μm thickness was applied on 6061 aluminum alloy by direct current electroplating. The samples were then heat-treated for different durations at 450, 500 and 550 °C under argon atmosphere. The intermetallic phases were identified by means of scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD). The results showed that the formation of intermetallic phases consisted of two important steps. The first step was the lateral growth of intermetallic phase from separate sites, resulting in the formation of a continuous layer. The second step was the growth of the continuous intermetallic layer in the direction perpendicular to the interface. However, excessive increase in thickness of intermetallic phases led to the detachment of reaction products, i.e., Al3 Ni and Al3Ni2, from the substrate. It was also observed that aluminum was the dominant diffusing element during Al3 Ni growth, while nickel diffusion was dominant during Al3Ni2 growth. The growth kinetics of both Al3 Ni and Al3Ni2 phases obeyed a parabolic law.
引文
[1]WU Liang,HE Yue-hui,JIANG Yao,ZENG Yi,XIAO Yi-feng,NAN Bo.Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics[J].Transactions of Nonferrous Metals Society of China,2014,24(11):3509-3516.
    [2]CUI Hong-zhi,WEI Na,ZENG Liang-liang,WANG Xiao-bin,TANG Hua-jie.Microstructure and formation mechanism of Ni-Al intermetallic compounds fabricated by reaction synthesis[J].Transactions of Nonferrous Metals Society of China,2013,23(6):1639-1645.
    [3]ROMANOWSKA J.Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel[J].CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry,2014,44:114-118.
    [4]JUNG S B,MINAMINO Y,YAMANE T,SAJI S.Reaction diffusion and formation of Al3Ni and Al3Ni2 phases in the Al-Ni system[J].Journal of Materials Science Letters,1993,12:1684-1686.
    [5]CASTELMAN L,SEIGLE L.Layer growth during interdiffusion in the aluminum-nickel alloy system[J].Transaction of Metallurgical Society of AIME,1967,212:590-598.
    [6]ZADOROZHNYY V,KALOSHIN S,TCHERDYNTSEV V,GORSHENKOV M,KOMISSAROV A,ZADOROZHNYY M.Formation of intermetallic Ni-Al coatings by mechanical alloying on the different hardness substrates[J].Journal of Alloys and Compounds,2014,586:s373-s376.
    [7]LIU J,MAYER J,BARBOUR J.Phase formation of Ni Al3 on lateral diffusion couples[J].Journal of Applied Physics,1988,64:651-655.
    [8]KONIECZNY M.Microstructural characterisation and mechanical response of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils[J].Materials Characterization,2012,70:117-124.
    [9]COLGAN E,NASTASI M,MAYER J.Initial phase formation and dissociation in the thin-film Ni/Al system[J].Journal of Applied Physics,1985,58:4125-4129.
    [10]PRETORIUS R.Phase sequence of silicide formation at metal-silicon interfaces[J].Vacuum,1990,41:1038-1042.
    [11]PRETORIUS R,VREDENBERG A,SARIS F,DEREUS R.Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule[J].Journal of Applied Physics,1991,70:3636-3646.
    [12]JANSSEN M,RIECK G.Reaction diffusion and Kirkendall-effect in the nickel-aluminum system[J].Transactions of Metallurgical Society of AIME,1967,239:1372-1385.
    [13]LIU J,MAYER J,BARBOUR J.Kinetics of Ni Al3 and Ni2Al3 phase growth on lateral diffusion couples[J].Journal of Applied Physics,1988,64:656-662.
    [14]MICHAELSEN C,BARMAK K.Calorimetric determination of Ni Al3 growth kinetics in sputter-deposited Ni/Al diffusion couples[J].Journal of Alloys and Compounds,1997,257:211-214.
    [15]VOJTECH D,NOVAK M,ZELINKOVA M,NOVAK P,MICHALCOVA A,FABIAN T.Structural evolution of electroless Ni-P coating on Al-12wt.%Si alloy during heat treatment at high temperatures[J].Applied Surface Science,2009,255:3745-3751.
    [16]SEQUEIRA C A C,AMARAL L.Role of Kirkendall effect in diffusion processes in solids[J].Transactions of Nonferrous Metals Society of China,2014,24(1):1-11.
    [17]MONDOLFO L F.Aluminum alloys:Structure and properties[M].London:Butterworths London,1976.
    [18]EVANS H,LOBB R.Conditions for the initiation of oxide-scale cracking and spallation[J].Corrosion Science,1984,24:209-222.
    [19]COLGAN E.A review of thin-film aluminide formation[J].Materials Science Reports,1990,5:1-44.
    [20]IP S,SRIDHAR R,TOGURI J,STEPHENSON T,WARNER A.Wettability of nickel coated graphite by aluminum[J].Materials Science and Engineering A,1998,244:31-38.
    [21]SWAIN M,SINGH S,BASUS,GUPTA M.Effect of interface morphology on intermetallics formation upon annealing of Al-Ni multilayer[J].Journal of Alloys and Compounds,2013,576:257-261.
    [22]QIU X,WANG J.Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils[J].Scripta Materialia,2007,56:1055-1058.
    [23]HIRANO K,AAGRWALA R,COHEN M.Diffusion of iron,nickel and cobalt in aluminum[J].Acta Metallurgica,1962,10:857-863.
    [24]HASAKA M,MORIMURA T,UCHIYAMA Y,KONDO S,WATANABE T,HISATSUNE K,FURUSE T.Diffusion of copper,aluminum and boron in nickel[J].Acta Metallurgica,1993,29:959-962.
    [25]MIRJALILI M,SOLTANIEH M,MATSUURA K,OHNO M.On the kinetics of Ti Al3 intermetallic layer formation in the titanium andaluminum diffusion couple[J].Intermetallics,2013,32:297-302.
    [26]JAIN M,GUPTA S.Formation of intermetallic compounds in the Ni-Al-Si ternary system[J].Materials Characterization,2003,51:243-257.
    [27]RASHIDI A.Activation energy for formation of nickel-aluminide thin film on nanocrystalline andmicrocrystalline nickel[J].Vacuum,2013,95:35-42.
    [28]BALOGH Z,SCHMITZ G.Diffusion in metals and alloys[M].Amesterdam:Elsevier,2014.
    [29]REN X,CHEN G,WU C,ZHANG J.Formation and growth kinetics of intermediate phases in Ni-Al diffusion couples[J].Journal of Wuhan University of Technology-Mater Sci Ed,2009,24:787-790.
    [30]TANG Wen-ming,HE An-qiang,LIU Qi,IVEY D G.Solid state interfacial reactions in electrodeposited Cu/Sn couples[J].Transactions of Nonferrous Metals Society of China,2010,20(1):90-96.
    [31]TANG W,HE A,LIU Q,IVEY D G.Room temperature interfacial reactions in electrodeposited Au/Sn couples[J].Acta Materialia,2008,56:5818-5827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700