Fe_3O_4/MnO_2磁性复合氧化物催化剂的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and performance of Fe_3O_4/MnO_2 magnetic bimetal oxide catalyst
  • 作者:吴光锐 ; 王德军 ; 侯亚璐 ; 赵朝成
  • 英文作者:WU Guangrui;WANG Dejun;HOU Yalu;ZHAO Chaocheng;College of Chemical Engineering,China University of Petroleum (East China);State Key Laboratory of Petroleum Pollution Control;
  • 关键词:磁性材料 ; 复合氧化物 ; 过一硫酸盐 ; 硫酸根自由基 ; 催化
  • 英文关键词:magnetic material;;bimetal oxide;;peroxymonosulfate;;sulfate radical;;catalytic
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:中国石油大学(华东)化学工程学院;石油石化污染物控制与处理国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家科技重大专项项目(2016ZX05040003)
  • 语种:中文;
  • 页:FUHE201901018
  • 页数:12
  • CN:01
  • ISSN:11-1801/TB
  • 分类号:153-164
摘要
具有磁性的非均相催化剂价格低廉、低污染、高能效、容易从溶液中分离出来。经过水热合成法合成的Fe_3O_4/MnO_2磁性复合氧化物催化剂在活化过一硫酸盐(2KHSO_5·KHSO_4·K_2SO_4)产生硫酸根自由基(SO-4·)降解水中有机污染物表现出了优良的性能。把不同质量的磁性Fe_3O_4微球与线状的MnO_2负载到一起,合成三种Fe_3O_4:MnO_2质量比分别为1∶3、2∶3、1∶1的Fe_3O_4/MnO_2催化剂,经过XRD、SEM和TEM表征,表明这两种金属氧化物负载到一起。对比不同Fe_3O_4:MnO_2质量比的Fe_3O_4/MnO_2磁性复合氧化物催化剂活化2KHSO_5·KHSO_4·K_2SO_4的活性,发现Fe_3O_4/MnO_2(2∶3)催化剂催化活性最高。通过考察不同因素对Fe_3O_4/MnO_2(2∶3)催化活性的影响得出,水中罗丹明B (Rh B)降解的最佳条件为10mg/L Rh B、0.4g/L Fe_3O_4/MnO_2催化剂、0.3g/L 2KHSO_5·KHSO_4·K_2SO_4、pH=8。Fe_3O_4/MnO_2(2∶3)磁性复合氧化物催化剂经过3次循环利用后,催化活性没有明显下降。SO-4·在降解水中Rh B起主要作用。
        The heterogeneous catalyst of magnetism is low cost,little hazardous,high efficient and easy separation from aqueous solutions.The Fe_3O_4/MnO_2 magnetic bimetal oxide catalyst prepared via hydrothermal method shows a better performance in activating 2 KHSO_5·KHSO_4·K_2 SO_4 for Rhodamine B(Rh B)degradation in aqueous solutions.Different quality of magnetic microspheres Fe_3O_4 and nanowire MnO_2 loaded together,synthesizing Fe_3O_4/MnO_2 catalyst with three different Fe_3O_4∶MnO_2 mass ratios,which are 1∶3,2∶3,1∶1.The characterizations of XRD,SEM and TEM show that two metallic oxide are loaded together.Compared with the catalytic performances of three Fe_3O_4/MnO_2 magnetic bimetal oxide catalysts according to activate 2 KHSO_5·KHSO_4·K_2 SO_4 for Rh B degradation in aqueous solutions,founding the Fe_3O_4/MnO_2(2∶3)catalyst has the best catalytic activity.According to investigating the effects of reaction parameters on Rh B degradation on Fe_3O_4/MnO_2(2∶3)catalyst,the best conditions of Rh B degradation in aqueous solutions are 10 mg/L Rh B,0.4 g/L Fe_3O_4/MnO_2,0.3 g/L2 KHSO_5·KHSO_4·K_2 SO_4 and pH=8.After three cyclic utilizations,the 2∶3 Fe_3O_4/MnO_2 magnetic bimetal oxide catalyst still have a good performance.SO-4·plays an important role in degrading Rh B in aqueous solutions.
引文
[1]周云,欧阳晓平,王媛,等.还原氧化石墨烯@Ag2O改性TiO2基复合材料的制备及其可见光催化性能[J].复合材料学报,2018,35(2):384-390.ZHOU Y,OUYANG X P,WANG Y,et al.Preparation of reduced graphene oxide@Ag2O modified TiO2-based composites and their visible light photocatalytic properties[J].Acta Materiae Compositae Sinica,2018,35(2):384-390(in Chinese).
    [2] CHU K H,YE L Q,WANG W,et al.Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4 with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere,2017, 183:219-228.
    [3]郭勤,黄冬根,熊伟,等.电化学制备石墨烯/纳米TiO2复合材料及光催化性能[J].复合材料学报,2018,35(1):142-149.GUO Q,HUANG D G,XIONG W,et al.Electrochemical preparation and photocatalytic performance of graphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica,2018,35(1):142-149(in Chinese).
    [4] KHATAEE A,GHOLAMI P,SHEYDAEI M.Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water:Effect of parameters and intermediate identification[J].Journal of the Taiwan Institute of Chemical Engineers,2016,58:366-373.
    [5] KHATAEE A,GHOLAMI P,VAHID B,et al.Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye[J].Ultrasonics Sonochemistry,2016,32:357-370.
    [6] NARAYANI H,AUGUSTINE R,SUMI S,et al.Removal of basic and industrial azo reactive dyes from aqueous solutions via Fenton-like reactions using catalytic non-magnetic Pd-flyash and magnetic Pd-Fe3O4-flyash composite particles[J].Separation and Purification Technology,2017,172:338-349.
    [7] NASUHA N,ISMAIL S,HAMEEDB H.Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue29[J].Journal of Environmental Management,2017,196:323-329.
    [8] BEDOLLA-GUZMAN A,SIRES I,THIAM A,et al.Application of anodic oxidation,electro-Fenton and UVA photoelectro-Fenton to decolorize and mineralize acidic solutions of reactive yellow 160azo dye[J].Electrochimica Acta,2016,206:307-316.
    [9] LI X H,JIN X D,ZHAO N N,et al.Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell[J].Bioresource Technology,2017,228:322-329.
    [10] ZHANG H,LIU X,MA J,et al.Activation of peroxymonosulfate using drinking water treatment residuals for the degradation of atrazine[J].Journal of Hazardous Materials,2018,344:1220-1228.
    [11] LIU Q R,DUAN X G,SUN H Q,et al.Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation[J].The Journal of Physical Chemistry C,2016,120(30):16871-16878.
    [12] SAYED M.Efficient removal of phenol from aqueous solution by the pulsed high-voltage discharge process in the presence of H2O2[J].Chemistry International,2015,1(2):81-86.
    [13] FAN W P,BU W B,SHEN B,et al.Intelligent MnO2nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygenelevated synergetic therapy[J].Advanced Materials,2015,27(28):4155-4161.
    [14] LI X N,WANG Z H,ZHANG B,et al.FexCo3-xO4nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental,2016,181:788-799.
    [15] DING Y B,ZHU L H,WANG N,et al.Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4as a heterogeneous catalyst of peroxymonosulfate[J].Applied Catalysis B:Environmental,2013,129:153-162.
    [16] HUANG Z F,BAO H W,YAO Y Y,et al.Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J].Applied Catalysis B:Environmental,2014,154:36-43.
    [17] LIU C N,PAN D Y,TANG X Y,et al.Degradation of Rhodamine B by theα-MnO2/peroxymonosulfate system[J].Water,Air,&Soil Pollution,2016,227(3):92.
    [18] SAPUTRA E,MUHAMMAD S,SUN H Q,et al.α-MnO2activation of peroxymonosulfate for catalytic phenol degradation in aqueous solutions[J].Catalysis Communications,2012,26:144-148.
    [19] SAPUTRA E,MUHAMMAD S,SUN H Q,et al.Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J].Environmental Science&Technology,2013,47(11):5882-5887.
    [20] YAO Y J,YANG Z H,SUN H Q,et al.Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol[J].Industrial&Engineering Chemistry Research,2012,51(46):14958-14965.
    [21] CHEN X Y,CHEN J W,QIAO X L,et al.Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using acid orange 7as a model compound[J].Applied Catalysis B:Environmental,2008,80(1):116-121.
    [22] SHI P H,ZHU S B,ZHENG H A,et al.Supported Co3O4on expanded graphite as a catalyst for the degradation of orange II in water using sulfate radicals[J].Desalination and Water Treatment,2014,52(16-18):3384-3391.
    [23] WEI W,YANG S B,ZHOU H X,et al.3Dgraphene foams cross-linked with pre-encapsulated Fe3O4nanospheres for enhanced lithium storage[J].Advanced Materials,2013,25(21):2909-2914.
    [24] LUO J S,LIU J L,ZENG Z Y,et al.Three-dimensional graphene foam supported Fe3O4lithium battery anodes with long cycle life and high rate capability[J].Nano Letters,2013,13(12):6136-6143.
    [25] LIU J,ZHAO Z W,SHAO P H,et al.Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J].Chemical Engineering Journal,2015,262:854-861.
    [26] WANG Y X,SUN H Q,ANG H M,et al.3D-hierarchically structured MnO2for catalytic oxidation of phenol solutions by activation of peroxymonosulfate:Structure dependence and mechanism[J].Applied Catalysis B:Environmental,2015,164:159-167.
    [27] LIU J T,GE X,YE X X,et al.3Dgraphene/δ-MnO2aerogels for highly efficient and reversible removal of heavy metal ions[J].Journal of Materials Chemistry A,2016,4(5):1970-1979.
    [28] SHAO J J,LI W Y,ZHOU X Y,et al.Magnetic-field-assisted hydrothermal synthesis of 2×2tunnels of MnO2 nanostructures with enhanced supercapacitor performance[J].CrystEngComm,2014,16(43):9987-9991.
    [29] REN Y M,LIN L Q,MA J,et al.Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4(M=Co,Cu,Mn,and Zn)as heterogeneous catalysts in the water[J].Applied Catalysis B:Environmental,2015,165:572-578.
    [30]丁耀彬.基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D].武汉:华中科技大学,2013.DING Y B.Advanced oxidation technologies based on activation of peroxymonosulfate by transition metal oxides for degradation of organic pollutants[D].Wuhan:Huazhong University of Science and Technology,2013(in Chinese).
    [31] CHANDRA V,PARK J,CHUN Y,et al.Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J].ACS nano,2010,4(7):3979-3986.
    [32] GUAN Y H,MA J,LI X C,et al.Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J].Environmental Science&Technology,2011,45(21):9308-9314.
    [33] WANG Y X,SUN H Q,ANG H M,et al. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals[J].Chemical Engineering Journal,2014,245:1-9.
    [34] NETA P,HUIE R E,ROSS A B.Rate constants for reactions of inorganic radicals in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(3):1027-1284.
    [35] ZHAO J Y,ZHANG Y B,QUAN X,et al.Enhanced oxidation of sulfamethoxazole using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature[J].Separation and Purification Technology,2010,71(3):302-307.
    [36] SAPUTRA E,MUHAMMAD S,SUN H Q,et al.A comparative study of spinel structured Mn3O4,Co3O4and Fe3O4nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J].Journal of Colloid and Interface Science,2013,407:467-473.
    [37] BARD A J,PARSONS R,JORDAN J.Standard potentials in aqueous solution[M].New York:CRC Press,1985.
    [38] WANG Y X,INDRAWIRAWAN S,DUAN X G,et al.New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over onedimensionalα-MnO2nanostructures[J].Chemical Engineering Journal,2015,266:12-20.
    [39] SRIDHARAN K,PARK T J.Thorn-ball shaped TiO2nanostructures:Influence of Sn2+doping on the morphology and enhanced visible light photocatalytic activity[J].Applied Catalysis B:Environmental,2013,134-135:174-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700