液化空气储能系统与高温热水系统的耦合应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupling Application of High Temperature Hot Water System with Liquid Air Energy Storage System
  • 作者:苏苗印 ; 汪慧
  • 英文作者:SU Miaoyin;WANG Hui;Hangzhou Hangyang Chemical and Medical Engineering CO.,LTD;
  • 关键词:液化空气储能 ; 热水系统 ; 电加热 ; 压缩热
  • 英文关键词:Liquid air energy storage(LAES);;Hot water system;;Electric heat;;Compression heat
  • 中文刊名:ZLJS
  • 英文刊名:Chinese Journal of Refrigeration Technology
  • 机构:杭州杭氧化医工程有限公司;
  • 出版日期:2019-04-15
  • 出版单位:制冷技术
  • 年:2019
  • 期:v.39;No.168
  • 语种:中文;
  • 页:ZLJS201902010
  • 页数:5
  • CN:02
  • ISSN:31-1492/TB
  • 分类号:50-54
摘要
与传统一次能源相比,太阳能、海洋能和风能等可再生能源具有随机性和间断性的缺点,储能技术为解决电力的稳定供应发挥着重要的作用。近些年越来越受关注的液化空气储能技术兼备储能密度高和场地要求低的优点,是实现电力系统削峰填谷的一个理想解决方案。为提高液化空气储能技术的实用价值,通常利用余热回用方法提高系统的循环效率,但依靠特定外部条件的使用环境限制了该技术的推广应用。本文提出了一种与高温热水系统耦合应用的液化空气储能系统,利用压缩热和电加热器实现系统内冷热联动,既提高系统循环效率又克服了系统对外部热源的依赖,从而适应更加多样化的应用场合。
        Renewable energy such as solar, ocean and wind energy etc. has the shortcomings of randomness and discontinuity compared with traditional primary energy, and energy storage technology plays an important role in stable electrical supply. Liquid air energy storage(LAES) is an ideal solution to realize peak shaving and valley filling in power system which has attracted more and more attention due to its advantages of high density and low site requirement. Though waste heat has been used to improve the round-trip efficiency of the system usually, the application is limited because of its specific external condition. A liquefied air energy storage system coupled with high temperature hot water system is proposed to fit more various occasions, not only to improve efficiency of the system but also to overcome the dependence on external heat sources.
引文
[1]顾煜炯,徐婧,李倩倩.燃煤发电机组调峰能力模糊综合评估方法[J].热力发电,2017,45(2):15-21.
    [2]刘英军,刘畅,王伟,等.储能发展现状与趋势分析[J].中外能源,2017,22(4):80-83.
    [3]王聪,翟晓强,李卉,等.相变蓄冷换热器性能的实验研究[J].制冷技术,2014,34(2):11-16.
    [4]DING N,DUAN J,XUE S.Overall review of peaking power in China:status quo,barriers and solutions[J].Renewable and Sustainable Energy Reviews,2013,42:503-516.
    [5]国家电网公司“电网新技术前景研究”项目咨询组.大规模储能技术在电力系统中的应用前景分析[J].电力系统自动化,2013,37(1):1-7.
    [6]CHEN H,CONG T N,YANG W,et al.Progress in electrical energy storage system:a critical review[J].Progress in Natural Science,2009,19:291-312.
    [7]ANDREW J,SEAMUS D,BHARDTH K.Economic analysis of a hybrid energy storage system based on liquid air and compressed air[J].Journal of Energy Storage,2015,4:24-35.
    [8]曹广亮,陈曦.液化空气储能技术的优势分析及发展现状[J].真空与低温,2016,22(1):11-15.
    [9]BORRI E,TAFONE A,ROMAGNOLI A,et al.Apreliminary study on the optimal configuration and operating range of a"microgrid scale"air liquefaction plant for liquid air[J].Energy Storage Energy Conversion and Management,2017,243:275-285.
    [10]刘佳,夏红德,陈海生,等.新型液化空气储能技术及其在风电领域的应用[J].工程热物理学报,2010,12(31):1993-1996.
    [11]MORGAN R,NELMES S,GIBSON E,et al.Liquid air energy storage--Analysis and first results from a pilot scale demonstration plant[J].Applied Energy,2015,137:845-853.
    [12]计光华.透平膨胀机效率剖析[J].天然气工业,1989,9(6):56-61.
    [13]胡赟,王维博.立式多级高压低温液体离心泵转子系统的开发研制[J].深冷技术,2016(6):40-42.
    [14]张长江.热电冷联产技术及其应用[J].制冷技术,2005,25(4):6-13.
    [15]任彦,黄葆华,徐桂芝,等.基于一种深冷液化空气储能发电系统的多系统耦合启动研究[J].华北电力技术,2017,4:38-43.
    [16]黄钟岳,王晓放.透平式压缩机[M].北京:化学工业出版社,2004:29-34.
    [17]连红奎,李艳,束光阳子,等.我国工业余热回收利用技术综述[J].节能技术,2011,29(2):123-128.
    [18]吕灿仁,杨昭,马一太,等.利用变电站废热的热泵系统开发研究及其效益分析[J].制冷技术,1992,12(2):1-3.
    [19]鹿丁,徐清宇,陈高飞,等.大温跨余热驱动吸收式制冷系统模拟研究[J].工程热物理学报,2018,39(10):2144-2151.
    [20]计光华.透平膨胀机[M].北京:机械工业出版社,1982:11-12.
    [21]赵明梁,俊宇,张晓磊,等.液态压缩空气储能系统空气节流液化过程热力性能[J].云南电力技术,2016,44(6):90-93.
    [22]葛轶群,章学来,赵兰,等.LNG冷能的梯级利用[J].制冷技术,2006,26(3):14-16.
    [23]李鹏,魏朝良,张东恒,等.高温导热油发展概述[J].润滑油,2016,31(4):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700