菏泽市冬季PM_(2.5)中二元羧酸类SOA的昼夜变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diurnal Variation of Dicarboxylic Acids and Related SOA in PM_(2.5) from Heze City in Winter
  • 作者:孟静静 ; 刘晓迪 ; 侯战方 ; 李静 ; 魏本杰 ; 邢继钊
  • 英文作者:MENG Jing-jing;LIU Xiao-di;HOU Zhan-fang;LI Jing;WEI Ben-jie;XING Ji-zhao;School of Environment and Planning,Liaocheng University;State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences;
  • 关键词:二元羧酸 ; 昼夜变化特征 ; 液相形成机制 ; PM_(2.5) ; 菏泽市
  • 英文关键词:dicarboxylic acids;;diurnal variations;;aqueous formation mechanism;;PM_(2.5);;Heze City
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:聊城大学环境与规划学院;中国科学院地球环境研究所黄土与第四纪地质国家重点实验室;
  • 出版日期:2018-05-25 13:18
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41505112);; 山东省自然科学基金项目(BS2015HZ002);; 黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1504);; 大学生创新创业项目(26312161016);大学生创新创业项目(CXCY2017046)
  • 语种:中文;
  • 页:HJKZ201811005
  • 页数:9
  • CN:11
  • ISSN:11-1895/X
  • 分类号:38-46
摘要
为研究菏泽市冬季大气气溶胶中二元羧酸类化合物的昼夜变化特征与形成机制,于2017年冬季(12月)进行为期1个月的PM_(2.5)样品采集,并分析二元羧酸、酮羧酸、α-二羰基化合物及左旋葡聚糖等化学组分.结果表明,菏泽市冬季PM_(2.5)中白天二元羧酸与酮羧酸的总浓度均呈昼高夜低的变化特征,但α-二羰基化合物(二元羧酸的重要前体物)的变化特征却与之相反,表明白天气溶胶的氧化程度比夜晚强.无论在白天还是晚上,草酸(C_2)均是浓度最高的二元羧酸,其次是邻苯二甲酸(Ph)、丁二酸(C_4)和丙二酸(C_3),与其他城市地区的分子组成是相似的.由C_3/C_4的比值与温度(T)间的相关性分析可知,菏泽市冬季有机化合物主要受本地源的影响,而受远源输入的影响很小. C_2与SO_4~(2-)、气溶胶实际酸度(pHIS)的相关性分析表明,C_2主要是在液相中经酸催化的二次氧化反应形成的.因为主要的二元羧酸类化合物(C_2、Gly和mGly)与左旋葡聚糖(Levo)的相关性很强,且K~+/OC的平均比值为0. 06(范围为0. 03~0. 13),所以可以得出二元羧酸类化合物及K~+主要受生物质燃烧的影响.
        To identify the diurnal variation and formation mechanism of dicarboxylic acids and related compounds in PM_(2.5) from Heze City,PM_(2.5) samples were collected in the winter( December) of 2017,which were subsequently analyzed for dicarboxylic acids,ketocarboxylic acids,α-dicarbonyls,and levoglucosan( Levo). The results showed that the total concentrations of dicarboxylic and ketocarboxylic acids were higher during daytime than those during nighttime. In contrast to the diurnal variation of dicarboxylic and ketocarboxylic acids,the total concentrations of α-dicarbonyls exhibited higher concentrations in nighttime than in daytime. Because α-dicarbonyls are the major precursors of dicarboxylic acids,the opposing patterns suggest that the photochemical oxidation in daytime is stronger than that in nighttime. Oxalic acid( C_2) is the dominant species during both day-and nighttime,followed by phahalic acid( Ph),succinic acid( C_4),and malonic acid( C_3),which is consistent with that in other urban regions. The mass ratios of C_3/C_4( R~2> 0. 7) correlated strongly with temperature,indicating that organic compounds in the atmosphere of Heze City are mainly derived from the photochemical oxidation of local emissions rather than long-range transport in winter. C_2 correlated with in-situ pH and SO_4~(2-),suggesting that aqueous-phase oxidation was the major formation pathway of C_2,which is driven by acid-catalyzed oxidation. Since the major SOA( C_2,glyoxal,and methyglyoxal,secondary organic aerosol) correlated with Levo and the average mass rations of K~+/organic carbon was 0. 06( ranging from 0. 03 to 0. 13),it can be concluded that the dicarboxylic acids and related SOA and K~+in Heze City were significantly influenced by biomass burning in winter.
引文
[1] Huang R J,Zhang Y L,Bozzetti C,et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature,2014,514(7521):218-222.
    [2] Hallquist M, Wenger J C, Baltensperger U, et al. The formation,properties and impact of secondary organic aerosol:current and emerging issues[J]. Atmospheric Chemistry and Physics,2009,9(14):5155-5236.
    [3] Zhu Y H,Yang L X,Chen J M,et al. Molecular distributions of dicarboxylic acids,oxocarboxylic acids, andα-dicarbonyls in PM2. 5collected at Mt. Tai, in North China in 2014[J].Atmospheric Chemistry and Physics Discussions,2018:1-31,doi:10. 5194/acp-2017-1240.
    [4] Meng J J,Wang G H,Li J J,et al. Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua,central China:implications for sources and formation mechanisms[J]. Science of the Total Environment,2014,493:1088-1097.
    [5] Bilde M,Barsanti K,Booth M,et al. Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance:from dicarboxylic acids to complex mixtures[J]. Chemical Reviews,2015,115(10):4115-4156.
    [6]孟静静,侯战方,张二勋,等.黄山PM10中二元羧酸类化合物的季节变化特征及其来源[J].环境科学,2017,38(7):2688-2697.Meng J J,Hou Z F,Zhang E X,et al. Seasonal variation and sources of dicarboxylic acids and related compounds in PM10from Mt. Huangshan[J]. Environmental Science,2017,38(7):2688-2697.
    [7] Sorathia F, Rajput P, Gupta T. Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain:inferences from day night variability during wintertime[J]. Science of the Total Environment,2018,624:451-460.
    [8] Dutton M V,Evans C S. Oxalate production by fungi:its role in pathogenicity and ecology in the soil environment[J]. Canadian Journal of Microbiology,1996,42(9):881-895.
    [9] Rogge W F,Hildemann L M,Mazurek M A,et al. Sources of fine organic aerosol. 1. charbroilers and meat cooking operations[J]. Environmental Science&Technology,1991,25(6):1112-1125.
    [10] Jung J,Tsatsral B,Kim Y J,et al. Organic and inorganic aerosol compositions in Ulaanbaatar,Mongolia,during the cold winter of 2007 to 2008:dicarboxylic acids,ketocarboxylic acids,andα-dicarbonyls[J]. Journal of Geophysical Research,2010,115(D22):D22203.
    [11] Wang G H, Kawamura K, Cheng C L, et al. Molecular distribution and stable carbon isotopic composition of dicarboxylic acids,ketocarboxylic acids,andα-dicarbonyls in size-resolved atmospheric particles from Xi'an City,China[J]. Environmental Science&Technology,2012,46(9):4783-4791.
    [12] Kawamura K,Kaplan I R. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air[J].Environmental Science&Technology,1987,21(1):105-110.
    [13] Fraser M P,Cass G R,Simoneit B R T. Gas-phase and particlephase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel[J]. Environmental Science&Technology,1998,32(14):2051-2060.
    [14] Stone E A,Hedman C J,Zhou J B,et al. Insights into the nature of secondary organic aerosol in Mexico City during the MILAGRO experiment 2006[J]. Atmospheric Environment,2010,44(3):312-319.
    [15] Kawamura K,Okuzawa K,Aggarwal S G,et al. Determination of gaseous and particulate carbonyls(glycolaldehyde,hydroxyacetone,glyoxal,methylglyoxal,nonanal and decanal)in the atmosphere at Mt. Tai[J]. Atmospheric Chemistry and Physics,2013,13(10):5369-5380.
    [16] Kawamura K,Tachibana E,Okuzawa K,et al. High abundances of water-soluble dicarboxylic acids,ketocarboxylic acids andα-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season[J]. Atmospheric Chemistry and Physics,2013,13(16):8285-8302.
    [17] Jaffrezo J L,Davidson C I,Kuhns H D,et al. Biomass burning signatures in the atmosphere of central Greenland[J]. Journal of Geophysical Research,1998,103(D23):31067-31078.
    [18] Allen A G,Cardoso A A,da Rocha G O. Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil[J]. Atmospheric Environment,2004,38(30):5025-5038.
    [19] Myriokefalitakis S,Tsigaridis K,Mihalopoulos N,et al. In-cloud oxalate formation in the global troposphere:a 3-D modeling study[J]. Atmospheric Chemistry and Physics,2011,11(12):5761-5782.
    [20] Cheng C L,Li M,Chan C K,et al. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta,China:implications for the formation mechanism of oxalic acid[J].Atmospheric Chemistry and Physics,2017,17(15):9519-9533.
    [21] Hoque M, Kawamura K, Uematsu M. Spatio-temporal distributions of dicarboxylic acids,ω-oxocarboxylic acids,pyruvic acid,α-dicarbonyls and fatty acids in the marine aerosols from the North and South Pacific[J]. Atmospheric Research,2017,185:158-168.
    [22] Mochizuki T, Kawamura K, Miyazaki Y, et al. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji[J].Atmospheric Environment,2017,166:255-262.
    [23]孟静静,侯战方,刘晓迪,等.泰山夏季PM2. 5中二元羧酸类SOA的分子组成及来源[J].环境科学,2017,38(2):445-452.Meng J J,Hou Z F,Liu X D,et al. Compositions and sources of summertime dicarboxylic acids and related SOA in PM2. 5from Mt. Taishan[J]. Environmental Science,2017,38(2):445-452.
    [24] Wang J Y,Wang G H,Gao J,et al. Concentrations and stable carbon isotope compositions of oxalic acid and related SOA in Beijing before, during, and after the 2014 APEC[J].Atmospheric Chemistry and Physics,2017,17(2):981-992.
    [25] Wang G H, Niu S L, Liu C E, et al. Identification of dicarboxylic acids and aldehydes of PM10and PM2. 5aerosols in Nanjing,China[J]. Atmospheric Environment,2002,36(12):1941-1950.
    [26] Cheng C L,Wang G H,Zhou B H,et al. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an,China during haze and clean periods[J].Atmospheric Environment,2013,81:443-449.
    [27] Liu H X,Kawamura K,Kunwar B,et al. Sources and formation processes of short-chain saturated diacids(C2-C4)in inhalable particles(PM10)from Huangshi City, Central China[J].Atmosphere,2017,8(11):213.
    [28] Cao G L,Zhang X Y,Gong S L,et al. Emission inventories of primary particles and pollutant gases for China[J]. Chinese Science Bulletin,2011,56(8):781-788.
    [29]刘泽珺,吴建会,张裕芬,等.菏泽市PM2. 5碳组分季节变化特征[J].环境科学,2017,38(12):4943-4950.Liu Z J,Wu J H,Zhang Y F,et al. Seasonal variation of carbon fractions in PM2. 5in Heze[J]. Environmental Science,2017,38(12):4943-4950.
    [30]刘晓迪,孟静静,侯战方,等.济南市夏、冬季PM2. 5中化学组分的季节变化特征及来源解析[J].环境科学,2018,39(9):4014-4025.Liu X D,Meng J J,Hou Z F,et al. Seasonal variation and source analysis of chemical characteristic in PM2. 5during the summer and winter in Jinan City[J]. Environmental Science,2018,39(9):4014-4025.
    [31] Meng J J,Wang G H,Li J J,et al. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake,a continental background site in Tibet Plateau[J]. Atmospheric Environment,2013,79:582-589.
    [32] Cheng C L,Wang G H,Meng J J,et al. Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China[J]. Atmospheric Research,2015,161-162:134-142.
    [33] Li J J,Wang G H,Cao J J,et al. Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China:temperature and relative humidity effects[J].Atmospheric Chemistry and Physics,2013,13(22):11535-11549.
    [34] He N N,Kawamura K,Okuzawa K,et al. Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing:implication for photochemical aging during atmospheric transport[J]. Science of the Total Environment,2014,499:154-165.
    [35] Ho K F, Lee S C, Cao J J, et al. Dicarboxylic acids,ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong[J]. Atmospheric Environment,2006,40(17):3030-3040.
    [36] Kundu S, Kawamura K, Andreae T W, et al. Molecular distributions of dicarboxylic acids,ketocarboxylic acids andα-dicarbonyls in biomass burning aerosols:implications for photochemical production and degradation in smoke layers[J].Atmospheric Chemistry and Physics,2010,10(5):2209-2225.
    [37] Pavuluri C M,Kawamura K,Swaminathan T. Water-soluble organic carbon,dicarboxylic acids,ketoacids,andα-dicarbonyls in the tropical Indian aerosols[J]. Journal of Geophysical Research,2010,115(D11):D11302.
    [38] Gao S,Ng N L,Keywood M,et al. Particle phase acidity and oligomer formation in secondary organic aerosol[J].Environmental Science&Technology,2004,38(24):6582-6589.
    [39] Claeys M,Graham B,Vas G,et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science,2004,303(5661):1173-1176.
    [40] Akagi S K,Yokelson R J,Wiedinmyer C,et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry and Physics,2011,11(9):4039-4072.
    [41] Andreae M O,Merlet P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles,2001,15(4):955-966.
    [42] Rajput P, Sarin M, Sharma D, et al. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain[J]. Tellus B:Chemical and Physical Meteorology,2014,66(1):21026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700