宽带可调谐单频窄线宽光纤激光器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable Broadband Single-frequency Narrow-Linewidth Fiber Laser
  • 作者:马选选 ; 陆宝乐 ; 王凯乐 ; 侯瑶 ; 张凯龙 ; 陈浩伟 ; 白晋涛
  • 英文作者:Ma Xuanxuan;Lu Baole;Wang Kaile;Hou Yao;Zhang Kailong;Chen Haowei;Bai Jintao;National Key Laboratory of Shaanxi Province for Photoelectric Technology and Functional Materials;National Optical Technology and Functional,Nanomaterials International Science and Technology Joint Research Center;Institute of Photonics and Photon-Technology,Shaanxi Provincial Key Laboratory of Photo-Electronic Technology,Northwest University;
  • 关键词:激光器 ; 光纤激光器 ; 单频 ; 滤波器 ; 可调谐激光器
  • 英文关键词:lasers;;fiber lasers;;single frequency;;filter;;tunable lasers
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:陕西省光电技术与功能材料省部共建国家重点实验室培育基地;国家级光电技术与纳米功能材料国际联合研究中心;西北大学光子学与光子技术研究所,陕西省光电子技术重点实验室;
  • 出版日期:2018-08-23 17:14
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家重点研究计划(2017YFB0405102);; 陕西省教育厅重点实验室项目(15JS103)
  • 语种:中文;
  • 页:GXXB201901030
  • 页数:6
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:349-354
摘要
设计出一种集可调谐带通滤波器、高精度环形滤波器和光纤环形镜于一体的全光纤复合腔结构可调谐单频窄线宽光纤激光器。采用980 nm半导体激光器作为抽运源,掺镱光纤在谐振腔内分别作为增益介质和可饱和吸收体,成功实现波长为1030~1090 nm稳定的宽谱可调谐单频窄线宽激光输出。当抽运光的抽运功率为300 mW时,在波长为1070 nm处得到的输出功率最大,为18.5 mW,斜率效率达到7.95%,持续1 h内没有出现跳模现象,功率不稳定性小于1%;当抽运功率为200 mW时,利用延迟自外差法测量线宽,得到波长调谐范围内的平均线宽为8.7 kHz,弛豫振荡频率为64 kHz。
        The tunable single-frequency(SF) narrow-linewidth fiber laser with all-fiber complex cavity structure is designed, which is composed of an optical fiber tunable filter, a high-precision ring filter, and a fiber loop mirror. A980-nm semiconductor laser is used as the pumping source, and the ytterbium-doped fiber is employed as the gain medium and saturable absorber, then a wide-spectrum tunable single-frequency narrow-linewidth laser output from1030 nm to 1090 nm is successfully realized. When the pump power is up to 300 mW, the output power is 18.5 mW and the slope efficiency is 7.95% at the wavelength of 1070 nm. There is no mode hopping phenomenon within 1 h,and the standard deviation of power stability is less than 1 %. When the pump power is 200 mW, the linewidth is measured by the delay self-heterodyne method, and the average line width in the wavelength tuning range is8.7 kHz, and the relaxation oscillation frequency is 64 kHz.
引文
[1] Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 2005, 17(9):1827-1829.
    [2] Jiang M, Su R T, Zhang Z X, et al. Coherent beamcombining of fiber lasers using a CDMA-based singlefrequency dithering technique[J]. Applied Optics,2017, 56(15):4255-4260.
    [3] Wu T, Peng X, Gong W, et al. Observation and optimization of 4He atomic polarization spectroscopy[J].Optics Letters, 2013, 38(6):986-988.
    [4] Su R T, Zhou P, Wang X L, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array[J]. Optics Letters, 2012, 37(19):3978-3980.
    [5] Williams J G, Turyshev S G, Boggs D H. Progress in lunar laser ranging tests of relativistic gravity[J].Physical Review Letters, 2004, 93(26):261101.
    [6] Ray G J, Anderson T N, Caton J A, et al. OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiberamplified external-cavity diode laser[J].Optics Letters, 2001, 26(23):1870-1872.
    [7] Fu P, Feng X Q, Lu B L, et al. Switchable dualwavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror[J]. Optics&Laser Technology, 2018, 98:56-60.
    [8] Yang C S, Chen D, Zhao Q L, et al. Research progress of 2.0μm-band Tm-doped continuous wave single-frequency fiber laser[J]. Chinese Journal of Lasers, 2017, 44(2):0201006.杨昌盛,陈丹,赵齐来,等.2.0μm波段掺铥连续单频光纤激光器的研究进展[J].中国激光,2017,44(2):0201006.
    [9] Wan H D, Ding Z Q, Wang J, et al. Singlelongitudinal-mode narrow linewidth fiber lasers using high roundness microsphere as mode selector[J].Chinese Journal of Lasers, 2017, 44(10):1001003.万洪丹,丁佐芹,汪杰,等.基于高圆度微球腔选模的单纵模窄带光纤激光器[J].中国激光,2017,44(10):1001003.
    [10] Feng T, Ding D L, Yan F P, et al. Widely tunablesingle-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method[J]. Optics Express, 2016, 24(17):19760-19768.
    [11] Song Y W, Havstad S A, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG[J]. IEEE Photonics Technology Letters, 2001, 13(11):1167-1169.
    [12] Kim C S, Farokhrooz F N, Kang J U. Electro-optic wavelength-tunable fiber ring laser based on cascaded composite Sagnac loop filters[J]. Optics Letters,2004, 29(14):1677-1679.
    [13] Yeh C H, Huang T T, Chien H C, et al. Tunable Sband erbium-doped triple-ring laser with singlelongitudinal-mode operation[J]. Optics Express,2007, 15(2):382-386.
    [14] Liu Y, Hsu Y, Hsu C W, et al. Narrow line-width single-longitudinal-mode fiber laser using silicon-oninsulator based micro-ring-resonator[J]. Laser Physics Letters, 2016, 13(2):025102.
    [15] Zhang K, Kang J U. C-band wavelength-swept singlelongitudinal-mode erbium-doped fiber ring laser[J].Optics Express, 2008, 16(18):14173-14179.
    [16] Feng S J, Mao Q H, Tian Y Y, et al. Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity[J]. IEEE Photonics Technology Letters, 2013, 25(4):323-326.
    [17] Lu B L, Huang S H, Yin M J, et al. Wavelengthtunable single frequency ytterbium-doped fiber laser with loop mirror filter[J]. Chinese Physics Letters,2015, 32(4):044201.
    [18] Yeh C H, Tsai N, Zhuang Y H, et al. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter[J]. Optics&Laser Technology, 2017, 88:180-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700