煤矿巷道棚子支护对围岩传热的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Shed Support on Heat Transfer of Surrounding Rock in Roadway of Coal Mine
  • 作者:高科 ; 刘泽毅 ; 刘玉姣 ; 刘剑
  • 英文作者:GAO Ke;LIU Zeyi;LIU Yujiao;LIU Jian;College of Safety Science & Engineering,Liaoning Technical University;Key Laboratory of Mine Thermo-motive Disaster & Prevention,Ministry of Education;
  • 关键词:巷道 ; 棚子支护 ; 围岩 ; 传热
  • 英文关键词:roadway;;shed support;;surrounding rock;;heat transfer
  • 中文刊名:YOUS
  • 英文刊名:Nonferrous Metals Engineering
  • 机构:辽宁工程技术大学安全科学与工程学院;辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:有色金属工程
  • 年:2018
  • 期:v.8
  • 基金:国家自然科学基金资助项目(51404126,51574142);; 辽宁省教育厅科学研究项目资助(LYJL003);; 中国博士后科学基金(2017M611253)
  • 语种:中文;
  • 页:YOUS201806017
  • 页数:4
  • CN:06
  • ISSN:10-1004/TF
  • 分类号:93-96
摘要
基于Standard k-e湍流模型数值分析了在雷诺数25 860~689 600下棚子支护巷道的湍流传热、流阻及对巷道风流的影响。结果表明,棚子支护增大对流换热强度,加大壁面向巷道空间散热,随雷诺数的增大呈线性增强;巷道棚子支护扩大了温度梯度,使距离壁面0. 75 m处温度显著增加,压差随雷诺数呈指数函数增加,而无支护压差呈直线增加。
        The turbulent heat transfer,flow resistance and the influence on the roadway wind flow in the shed support roadway under the Reynolds number 25 860 ~ 689 600 are analyzed by numerical calculation method using the Standard k-e turbulence model. The results show that the shed support increases the convective heat transfer intensity,and increases the wall-to-lane space heat dissipation,which increases linearly with the increase of Reynolds number. The roadway shed support expands the temperature gradient,which increases the temperature at 0. 75 m from the wall. The pressure difference increases exponentially with the Reynolds number,while the unsupported pressure difference increases linearly.
引文
[1] VON GLEHN F H,BLUHM S J. Practical aspects of the ventilation of high-speed developing tunnels in hot working environments[J]. Tunnelling and underground space technology,2000,15(4):471-475.
    [2] LOWNDES I S,PICKERING S J,TWORT C T. The application of exergy analysis to the cooling of a deep UK colliery[J]. Journal South African insititute of mining and metallurgy,2004,104:381-396.
    [3]罗永豪,赵阳升.煤矿井下不同粗糙度巷道内风速分布的风洞模拟[J].太原理工大学学报,2015,46(2):235-237.
    [4]舍尔巴尼A H.矿井降温指南(译本)[M].北京:煤炭工业出版社,1982.
    [5]周西华,单亚飞,王继仁.井巷围岩与风流的不稳定换热[J].辽宁工程技术大学学报(自然科学版),2002,21(3):264-266.
    [6]岑衍强,胡春胜,侯祺棕.井巷围岩与风流间不稳定换热系数的探讨[J].阜新矿业学院学报,1987,6(3):105-114.
    [7]SUN P D. A new computation method for the unsteady heat transfer coefficient in a deep mine[J]. Journal of coal science&engineering(China),1999,5(2):57-61.
    [8]王义江.深部热环境围岩及风流传热传质研究[D].徐州:中国矿业大学,2010.
    [9]WANG Y J,ZHOU G Q,WU L,et al. An analytical study of unsteady heat transfer in the rock surrounding a deep airway[J]. International journal of mining science and technology,2012,22(3):411-415.
    [10]秦跃平,秦凤华.用差分法解算巷道围岩与风流不稳定换热准数[J].湘潭矿业学院学报,1998,13(1):6-10.
    [11]高建良,何权富,张学博.矿井巷道对流换热系数的现场测定[J].中国安全科学学报,2010,20(2):100-103.
    [12]程卫民,诸葛福民,周刚,等.改进动量BP算法计算围岩风流不稳定传热系数[J].煤炭科学技术,2009,(12):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700