利用连续变量纠缠信号提高罗兰C台间同步精度的方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Method for Improving Roland C Inter-Station Synchronization Precision Using Continuous-Variable Entanglement Signals
  • 作者:陈超 ; 吴德伟 ; 杨春燕 ; 李响 ; 朱浩男
  • 英文作者:Chen Chao;Wu Dewei;Yang Chunyan;Li Xiang;Zhu Haonan;Information and Navigation College,Air Force Engineering University;
  • 关键词:量子光学 ; 罗兰C ; 台间同步 ; 连续变量源信号 ; 测时精度
  • 英文关键词:quantum optics;;Roland C;;inter-station synchronization;;continuous-variable entanglement signal;;time measurement precision
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:空军工程大学信息与导航学院;
  • 出版日期:2018-09-07 11:00
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.639
  • 基金:国家自然科学基金(61573372,61603413)
  • 语种:中文;
  • 页:JGDJ201904027
  • 页数:7
  • CN:04
  • ISSN:31-1690/TN
  • 分类号:227-233
摘要
基于不同位置的动态光路延迟装置和位于罗兰C主台的纠缠源信号,通过主台非平衡M-Z(马赫-曾德尔)干涉仪检测不同路径纠缠光场的相位差信息,得到罗兰C主、副台的同步时差信息。理论和仿真分析结果表明,在相位差为0.5π时,能得到最佳时差信息,精度能达到数十皮秒级别。相较于原有的主从同步或自由同步等方式,此方案不需要测量脉冲到达时间,而且能够突破量子噪声极限,有效提高了测时精度。
        Based on the dynamic optical path delay device with different positions and the entangled source signals at Roland C main station as well as the phase difference information of entangled light fields with different paths detected by the main station unbalanced M-Z(Mach-Zehnder)interferometer,the synchronization time difference information of Roland C main and auxiliary stations is obtained.The theoretical and simulation results show that the optimal time difference information with a precision of tens of picoseconds is obtained when the phase difference is 0.5π.Compare with the original master-slave synchronization,free synchronization and others,the proposed scheme does not need to measure the pulse arrival time.Moreover it can break through the quantum noise limit and effectively improve the time measurement accuracy.
引文
[1]Wang J,Yan J H,Li C Z.Foreign situation of enhanced Loran and analyses of the modernization reconstruction of domestic Loran-C system[J].Hydrographic Surveying and Charting,2009,29(3):79-82.汪捷,严建华,李川章.国际eLoran发展现状与我国罗兰C现代化的技术分析[J].海洋测绘,2009,29(3):79-82.
    [2]Yan J H,Niu H F,Zhao L X.Measurement analysis of factors influencing Loran C positioning and timing accuracy[J].Hydrographic Surveying and Charting,2014,34(4):69-72.严建华,牛会丰,赵立霞.影响罗兰C系统定位定时精度因素的实测分析[J].海洋测绘,2014,34(4):69-72.
    [3]Giovannetti V,Lloyd S,MacCone L.Quantum cryptographic ranging[J].Journal of Optics B:Quantum and Semiclassical Optics,2002,4(4):S413-S414.
    [4]Giovannetti V,Lloyd S,MacCone L.Quantumenhanced positioning and clock synchronization[J].Nature,2001,412(6845):417-419.
    [5]Song P S,Ma J,Zhang S Y,et al.Research and development status of quantum navigation technology[J].Laser&Optoelectronics Progress,2018,55(9):090003.宋培帅,马静,张淑媛,等.量子定位导航技术研究与发展现状[J].激光与光电子学进展,2018,55(9):090003.
    [6]Giovannetti V,Lloyd S,MacCone L,et al.Clock synchronization with dispersion cancellation[J].Physical Review Letters,2001,87(11):117902.
    [7]Giovannetti V,Lloyd S,MacCone L,et al.Conveyor-belt clock synchronization[J].Physical Review A,2004,70(4):043808.
    [8]Valencia A,Scarcelli G,Shih Y.Distant clock synchronization using entangled photon pairs[J].Applied Physics Letters,2004,85(13):2655-2657.
    [9]Hong C K,Ou Z Y,Mandel L.Measurement of subpicosecond time intervals between two photons by interference[J].Physical Review Letters,1987,59(18):2044-2046.
    [10]Bahder T B,Golding W M.Clock synchronization based on second-order quantum coherence of entangled photons[J].AIP Conference Proceedings,2004,734(1):395-398.
    [11]Hou F Y,Quan R A,Tai Z Y,et al.Review of progress in quantum synchronization protocols research[J].Journal of Time and Frequency,2014,37(2):65-73.侯飞雁,权润爱,邰朝阳,等.量子时间同步协议研究进展回顾[J].时间频率学报,2014,37(2):65-73.
    [12]Su X L,Zhao Y P,Hao S H,et al.Experimental preparation of eight-partite cluster state for photonic qumodes[J].Optics Letters,2012,37(24):5178-5180.
    [13]Li Q,Deng X W,Zhang Q,et al.Experimental preparation of a pure two-mode squeezed state[J].Acta Optica Sinica,2016,36(4):0427001.李强,邓晓玮,张强,等.实验制备纯的双模压缩态[J].光学学报,2016,36(4):0427001.
    [14]Chen H,Tan A H.The influence of noise from injection fields of the optical parametric oscillator on the quantum entanglement characteristics of the output fields[J].Journal of Quantum Optics,2018,24(2):147-155.陈浩,谭爱红.注入场噪声对非简并光学参量振荡器输出场量子纠缠特性的影响研究[J].量子光学学报,2018,24(2):147-155.
    [15]Sun H X,Liu K,Zhang J X,et al.Quantum precision measurement based on squeezed light[J].Acta Physica Sinica,2015,64(23):234210.孙恒信,刘奎,张俊香,等.基于压缩光的量子精密测量[J].物理学报,2015,64(23):234210..
    [16]Vahlbruch H,Mehmet M,Chelkowski S,et al.Observation of squeezed light with 10-dB quantumnoise reduction[J].Physical Review Letters,2008,100(3):033602.
    [17]Zhang W H,Yang W H,Shi S P,et al.Mode matching in preparation of squeezed field with high compressibility[J].Chinese Journal of Lasers,2017,44(11):1112001.张文慧,杨文海,史少平,等.高压缩度压缩态光场制备中的模式匹配[J].中国激光,2017,44(11):1112001.
    [18]Jin X L,Su J,Zheng Y H.Influence of the non-ideal balanced homodyne detection on the measured squeezing degree[J].Acta Optica Sinica,2016,36(10):1027001.靳晓丽,苏静,郑耀辉.非理想平衡零拍探测系统对实测压缩度的影响[J].光学学报,2016,36(10):1027001.
    [19]Peres A.Separability criterion for density matrices[J].Physical Review Letters,1996,77(8):1413-1415.
    [20]Eberle T,Steinlechner S,Bauchrowitz J,et al.Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J].Physical Review Letters,2010,104(25):251102.
    [21]Zhu J.Study onpositioning key technologies with quantum correlation[D].Shanghai:Shanghai Jiao Tong University,2012:21-33.朱俊.量子关联定位关键技术的研究[D].上海:上海交通大学,2012:21-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700