高性能混凝土抗隧道火灾爆裂剥落研究现状综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of the research status of high performance concrete anti-tunnel fire spalling
  • 作者:朱平华 ; 于树奇 ; 刘文影 ; 孙远乾
  • 英文作者:ZHU Pinghua;YU Shuqi;LIU Wenying;SUN Yuanqian;Department of Civil Engineering,Changzhou University;
  • 关键词:隧道 ; 火灾 ; 剥落 ; 防火涂层 ; 综述
  • 英文关键词:tunnel;;fire;;spalling;;fire retardant coating;;review
  • 中文刊名:HLTF
  • 英文刊名:Concrete
  • 机构:常州大学土木工程系;
  • 出版日期:2018-07-27
  • 出版单位:混凝土
  • 年:2018
  • 期:No.345
  • 基金:国家自然科学基金资助项目(51678080,51678081)
  • 语种:中文;
  • 页:HLTF201807007
  • 页数:6
  • CN:07
  • ISSN:21-1259/TU
  • 分类号:29-34
摘要
首先从强度等级、湿含量、配筋率、截面尺寸和受火方式等主要影响因素入手,归纳总结了现有高性能混凝土(High Performance Concrete,HPC)抗隧道火灾爆裂剥落的研究成果,指出降低HPC湿含量可有效降低其高温下的爆裂剥落几率。其次阐述了HPC高温下的3种爆裂剥落机理及其计算方法,认为现有机理与计算方法有待完善。然后从防火涂层入手比较了HPC隧道防火措施的优劣,指出气凝胶砂浆涂层是未来隧道HPC结构防火的发展方向。最后提出了HPC隧道火灾研究的主要关键问题,包括界定高温爆裂机理的特征参数,提出基于结构全寿命周期成本理论的最优涂层技术等。
        Firstly,the main factors of high temperature bursting of concrete caused by strength grade,wet content,reinforcement ratio,cross section size and fire way were summarized.The results of research on the fire extinguishing of existing high performance concrete were summarized,wet content can effectively reduce the high performance concrete high temperature burst probability.Secondly,three kinds of bursting mechanism and calculation methods of high performance concrete under high temperature were explained,and the existing mechanism and calculation methods need to be improved.And then focus on the fire retardant coating to analyze the high performance concrete tunnel fire prevention measures,aerogel mortar coating is the first choice of fire prevention measures in the future.Finally,the main key problems of high performance concrete tunnel fire research are proposed,including the characteristic parameters of the high temperature burst mechanism were defined,and the optimal coating technology based on the whole life cycle cost theory was proposed and so on.
引文
[1]中国隧道工程学术研究综述·2015[J].中国公路学报,2015(5):1-65.
    [2]云清.2015年交通运输行业发展统计公报(公路部分)[J].商用汽车,2016(6):124-126.
    [3]张硕生,张庆明,毛朝君.隧道防火保护的现状及发展趋势[J].消防技术与产品信息,2003(7):6-9.
    [4]闫治国,朱合华,何利英.欧洲隧道防火计划(UPTUN)介绍及启示[J].地下空间,2004,24(2):212-219.
    [5]许小鹏.表面设置防火涂料钢纤维混凝土高温后力学性能的研究[D].长沙:湖南大学,2015.
    [6]向青松.复合型隧道防火涂料及性能研究[D].长沙:湖南大学,2013.
    [7]游有鲲.高强混凝土抗火灾性能改善措施与评价方法研究[D].南京:东南大学,2004.
    [8]高宇剑.高强混凝土火灾后力学性能退化及高温爆裂机理研究[D].徐州:中国矿业大学,2014.
    [9]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8-12+34.
    [10]侯高峰,韦军.高温后不同强度等级混凝土力学性能的试验研究[J].工程质量,2010,28(3):68-70.
    [11]肖明辉,时旭东,邢万里.不同等级混凝土强度高温衰退性能试验研究[J].建筑结构,2009,39(7):113-115+99.
    [12]过振海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [13]尚亚杰.组合养护对含粗骨料超高性能混凝土常温性能及高温爆裂行为的影响[D].北京:北京交通大学,2016.
    [14]HERTZ K D.Limits of spalling of fire-exposed concrete[J].Fire Safety Journal,2003,38(2):103-106.
    [15]JANOTKA I,BAGEL L.Pore structures,permeabilities and compressive strengths of concrete at temperatures up to 800℃[J].ACI Materials Journal,2002,99(2):196-200.
    [16]CHAN S Y N,PENG G F,ANSON M.Fire behavior of high-performance concrete made with silica fume at various moisture contents[J].ACI Materials Journal,1999,96(3):405-409.
    [17]朋改非,陈延年,ANSON M.高性能硅灰混凝土的高温爆裂与抗火性[J].建筑材料学报,1999,2(3):193-198.
    [18]朋改非,郝挺宇,李保华,等.普通强度高性能混凝土的高温性能试验研究[J].工业建筑,2010,40(11):27-31.
    [19]闫倩倩,田波,谢晋德.含湿量和纤维对隧道二衬混凝土高温性能的影响[J].公路交通科技,2015,32(4):102-107.
    [20]LIU X,YE G,SCHUTTER G D,et al.On the mechanism of polypropylene fibers in preventing fire spalling in self-compacting and high-performance cement paste[J].Cement and Concrete Research,2008,38(4):487-499.
    [21]BANGI M R,HORIGUCHI T.Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures[J].Cement and Concrete Research,2011,41(11):1150-1156.
    [22]边松华,朋改非,赵章力,等.含湿量和纤维对高性能混凝土高温性能的影响[J].建筑材料学报,2005,8(3):321-327.
    [23]黄素芬.混凝土结构在火灾中的可靠度分析[D].昆明:昆明理工大学,2012.
    [24]王春华,程超.高温冷却后钢筋混凝土简支梁强度损伤的研究[J].西南交通大学学报,1992,84(2):64-74.
    [25]BAILEY C G,TOH W S.Behaviour of concrete floor slabs at ambient and elevated temperatures[J].Fire Safety Journal,2007,42(6):425-436.
    [26]张威振.高温后钢筋混凝土梁的试验及其有限元分析[J].哈尔滨工业大学学报,2009,41(4):181-184.
    [27]BIKHIET M M,EI-SHAFEY N F,El-HASHIMY H M.Behavior of reinforced concrete short columns exposed to fire[J].Alexandria Engineering Journal,2014,53(3):643-653.
    [28]郑文忠,侯晓萌,王英.混凝土及预应力混凝土结构抗火研究现状与展望[J].哈尔滨工业大学学报,2016,48(12):1-18.
    [29]苏南,林铜柱,LIE T T.钢筋混凝土柱的抗火性能[J].土木工程学报,1992,25(6):25-36.
    [30]MARTINS A M B,RODRIGUES T P C.Fire resistance of reinforced concrete columns with elastically restrained thermal elongation[J].Engineering Structures,2010,32(10):3330-3337.
    [31]高层民用建筑设计防火规范(1999年版):GB 50045—1995[S].北京:中国计划出版社,1995.
    [32]晏兴威.火灾后钢筋混凝土结构抗震性能分析[J].长安大学学报(自然科学版),2002,22(5):73-75.
    [33]吴波,徐玉野.高温下钢筋混凝土异形柱的试验研究[J].建筑结构学报,2007,28(5):24-31.
    [34]吴波,李毅海.轴向约束钢筋混凝土柱火灾后剩余轴压性能的试验研究[J].土木工程学报,2010,43(4):85-91.
    [35]林碧兰,李丹,徐玉野.三面受火后混凝土短柱受剪承载力的数值计算[J].华侨大学学报(自然科学版),2014,35(4):437-442.
    [36]张幸,肖岩,KUNATH S K.钢筋混凝土柱抗火性能的研究现状与展望[J].自然灾害学报,2015,24(3):120-131.
    [37]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993(3):47-54.
    [38]唐贵和,黄金林.不同受火方式下钢筋混凝土柱耐火极限研究[J].广东土木与建筑,2006(12):8-1.
    [39]吴波,唐贵和,王超.不同受火方式下混凝土柱耐火性能的试验研究[J].土木工程学报,2007,40(4):27-31+72.
    [40]BAZANT Z P.Analysis of pore pressure,thermal stresses and fractures in rapidly heated concrete[C].International Workshop on Fire Performance of High-Strength Concrete,Gaithersburg,USA:National Institute of Standards and Technology,1997:155-164.
    [41]DOUGILL J W.Modes of failure of concrete panels exposed to high temperatures[J].Magazine of Concrete Research,1972,24(79):71-76.
    [42]FU Y,LI L.Study on mechanism of thermal spalling in concrete exposed to elevated temperatures[J].Material and Structures,2011,44(1):361-376.
    [43]吴佳.高温对高性能混凝土微观结构与蒸汽压的影响[D].太原:太原理工大学,2016.
    [44]王里,刘红彬,鞠杨,等.高强高性能混凝土高温爆裂机理研究进展[J].力学与实践,2014,36(4):403-412.
    [45]公伟,胡克旭.自密实混凝土结构抗火研究进展[J].建筑结构学报,2016(3):1-9.
    [46]张桥.高性能混凝土高温损伤试验及温度场模拟研究[D].太原:太原理工大学,2016.
    [47]KODUR V K R,WANG T,CHENG F.Predicting the fire resistance behavior of high strength concrete columns[J].Cement and Concrete Composites,2004,26(2):141-153.
    [48]DWAIKAT M B,KODUR V K R.Hydrothermal model for predicting fire-induced spalling in concrete structural systerns[J].Fire Safety Journal,2009,44(3):425-434.
    [49]GAWIN D,PESAVENTO F,SCHREFLER B A.Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete[J].Computer Methods in Applied Mechanics and Engineering,2006,195(4l/43):5707-5729.
    [50]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,25(5):58-69.
    [51]KODUR V,RAUT N.Design equation for predicting fire resistance of reinforced concrete columns[J].Structural Concrete,2009,10(2):73-86.
    [52]WU B,ZHOU H,TANG G H,et al.Fire resistance of reinforced concrete columns with square cross section[J].Advance in Structural Engineering,2007,10(4):353-369.
    [53]周波.单组分环保型隧道防火涂料[D].长沙:湖南大学,2012.
    [54]王农,李静萍.防火涂料的研究现状及其发展[J].兰州铁道学院学报,2002(6):106-108.
    [55]OCTAVION,A.Fire-Proof Material:US,7101614[P].2006.
    [56]OCTAVION,A.Fire-Proof Material:US,20040101672[P].2004.
    [57]GONG J Q,XIANG Q S,ZHAO M H.Laboratory research on composite tunnel fire-retardant coating[J].Materials and Manufacturing Processes,2015,30(6):699-705.
    [58]汪源,朱金华,陈兆文,等.防火涂料的研究现状与发展趋势[J].材料保护,2006,39(3):39-42,77.
    [59]刘军军.防火涂料的现状及发展趋势[J].消防技术与产品信息,2004(11):28-31.
    [60]程小伟,姚亚东,尹光福,等.隧道防火涂料配合比设计和性能研究[J].施工技术,2005,34(11):73-75.
    [61]王新钢,毛朝君.环保型隧道防火涂料的研究应用及其前景[J].现代涂料与涂装,2006(7):12-15.
    [62]毛朝君,何世家,兰彬,等.隧道防火保护及隧道防火涂料的研究[J].公路隧道,2005(3):38-47.
    [63]何玲玲.防火涂层混凝土箱梁火灾温度场分析[D].西安:长安大学,2014.
    [64]李建涛,刘向荣,苏智魁.硅气凝胶隧道防火涂料的制备及性能研究[J].新型建筑材料,2014(10):14-17.
    [65]KIM S,SEO J,CHA J,et al.Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel[J].Construction and Building Materials,2013(40):501-505.
    [66]RATKE L.Herstellung und eigenschaften eines neuen leichtbetons:aerogelbeton[J].Beton-und Stahlbetonbau,2010,103(4):236-243.
    [67]GAO T,JELLE B P,GUSTAVSEN A,et al.Aerogel-incorporated concrete:an experimental study[J].Construction and Building Materials,2014,52:130-136.
    [68]张贺新,赫晓东,何飞.气凝胶隔热性能及复合气凝胶隔热材料研究进展[J].材料工程,2007(S1):94-97.
    [69]IBRAHIM M,BIWOLE P H,WURTZ E,et al.A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating[J].Building and Environment,2014,81(7):112-122.
    [70]KIM S,SEO J,CHA J,et al.Chemical retreating for gel-type aerogel and insulation performance of cement containing aerogel[J].Construction and Building Materials,2013,40(3):501-505.
    [71]钱春香,游有鲲.抑制高强混凝土受火爆裂的措施[J].硅酸盐学报,2005,33(7):846-852.
    [72]杜红秀,张宁,王慧芳,等.聚丙烯纤维对高强混凝土高温后残余抗压强度的影响[J].太原理工大学报,2012(2):207-211.
    [73]高丹盈,李晗,杨帆.聚丙烯-钢纤维增强高强混凝土高温性能[J].复合材料学报,2013,30(1):187-193.
    [74]肖建庄,谢猛,潘其健.高性能混凝土框架火灾反应与抗火性能研究[J].建筑结构学报,2004,25(4):1-7.
    [75]尹强.聚丙烯纤维对高强混凝土高温后力学性能的影响[J].太原理工大学学报,2013,44(5):651-654.
    [76]HSIE M,TU C,SONG P S.Mechanical properties of polypropylene hybrid fiber-reinforced concrete[J].Materials Science and Engineering,2008,494(1/2):153-157.
    [77]吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8-12.
    [78]游有鲲,钱春香,缪昌文.掺聚丙烯纤维的高强混凝土高温性能研究[J].安全与环境工程,2004,11(1):63-66.
    [79]袁杰,吴波.PP纤维高强混凝土的和易性及高温后抗压强度的试验研究[J].混凝土,2001(3):30-33.
    [80]王平,肖建庄,陈瑞生,等.聚丙烯纤维对高性能混凝土高温后力学性能的影响试验研究[J].工业建筑,2005,35(11):67-70.
    [81]KAHANJI C,ALI F,NADJAI A.Explosive spalling of ultra-high performance fibre reinforced concrete beams under fire[J].Journal of Structural Fire Engineering,2016,7(4):328-348.
    [82]章伟,蒋首超.隧道结构防火研究综述[J].四川建筑科学研究,2011,37(2):115-119.
    [83]GURUPRASAD S,MUKHERJEE A.Layered sacrificial claddings under blast loading Part I-analytical studies[J].International Journal of Impact Engineering,2000,24(9):957-973.
    [84]KARAGIOZOVA D,LANGDON G S,NURICK G N.Blast attenuation in Cymat foam core sacrificial claddings[J].International of Journal of Mechanical Sciences,2010,52(5):758-776.
    [85]丁圆圆,王士龙,郑志军,等.多胞牺牲层的抗爆炸分析[J].力学学报,2014(6):825-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700