基于柔性直流的±10kV配电网雷电侵入波过电压仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation on the Lightning Intruding Overvoltage of the ±10kV DC Distribution Network Based on VSC-DC
  • 作者:韩永霞 ; 张杰 ; 赵宇明 ; 刘国伟 ; 何秋萍 ; 李立浧
  • 英文作者:HAN Yongxia;ZHANG Jie;ZHAO Yuming;LIU Guowei;HE Qiuping;LI Licheng;School of Electric Power, South China University of Technology;Jiangmen Power Supply Company;Shenzhen Power Supply Company;
  • 关键词:直流配电网 ; 换流器 ; 雷电侵入波 ; 避雷器配置方案 ; 雷电冲击绝缘水平
  • 英文关键词:DC distribution network;;converter;;lightning intruding voltage;;configuration scheme of arresters;;lightning impulse withstand level
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:华南理工大学电力学院;江门供电局有限公司;深圳供电局有限公司;
  • 出版日期:2018-08-28
  • 出版单位:高电压技术
  • 年:2018
  • 期:v.44;No.309
  • 基金:国家高技术研究发展计划(863计划)(2013AA050104);; 广东省自然科学基金(2014A030313249)~~
  • 语种:中文;
  • 页:GDYJ201808014
  • 页数:8
  • CN:08
  • ISSN:42-1239/TM
  • 分类号:107-114
摘要
基于柔性直流的配电系统因方便新能源接入等各种优点而成为国内外的研究热点,过电压及防护是其重要研究方向之一。为此,针对某基于柔性直流的±10kV配电网开展了雷电侵入波过电压及防护措施研究。首先,依据±10kV配电网主接线形式分析换流器在雷电侵入波下高频模型的建模方法,并基于PSCAD/EMTDC电磁暂态仿真程序建立交/直流侧雷电侵入波过电压仿真模型。其次,仿真分析了雷电流直击导线和雷击塔顶反击时换流器内各设备雷电过电压分布及影响因素,并对比分析杆塔侧加装L型避雷器对各设备雷电过电压的限制作用。仿真结果表明:交/直流侧不配置L型避雷器雷直击导线、反击塔顶时换流器承受最大雷电流幅值分别为50 k A/34 k A和28 k A/32 k A,而配置L型避雷器后交/直流侧承受最大雷电流幅值提高至75 k A。最后,根据交/直流侧雷电侵入波在各设备上形成的最大过电压,校核避雷器配置方案并确定关键设备的雷电冲击绝缘水平。计算结果表明:直流侧开关场设备、直流电抗器及交流侧联接变压器雷电冲击绝缘水平取为60kV,而直流侧母线上设备、直流侧联接变压器雷电冲击绝缘水平取为40kV。
        The intelligent power distribution system based on VSC-DC has stimulated enormous research interest at home and abroad because of its variety of advantages, and overvoltage protection is one of the important research points. The lightning intruding overvoltage and protective measures of a ±10kV intelligent power distribution system is analyzed. First, according to the configuration of the ±10kV intelligent power distribution system, the modeling methods of high-frequency model of the converter under lightning is analyzed, and then the lightning intruding overvoltage simulation program of AC/DC yard is established by the PSCAD/EMTDC program. Secondly, the lighting overvoltage distribution of the equipment in converter and the influencing factors is analyzed in the case of direct-lightning and back flashover on the AC/DC transmission lines. At the same time, the lighting overvoltage of each equipment in the presence and absence of the L type arresters is compared. The simulation results show that, in the absence of the L-type arrester, the maximum withstand lightning current of VSC under shielding failure and back flashover is 50 k A/34 k A in AC and 28 k A/32 k A in DC, respectively. However, the withstand value of the lightning current is raised up to over 70 k A when the L-type arrester is configured in the system. Finally, according to the maximum lightning intruding overvoltage in both AC and DC yard, the configuration scheme of arresters is checked and the lightning impulse withstand voltage of the critical equipment is determined. The calculation results show that the insulation level of the switch equipment in DC side, the DC reactor and the converter transformer in AC side is all 60kV under the impact of lightning impulse, and the insulation level of the equipment of the DC bus and the converter transformer in DC side is 40kV.
引文
[1]江道灼,郑欢.直流配电网研究现状与展望[J].电力系统自动化,2012,36(8):98-104.JIANG Daozhuo,ZHENG Huan.Research status and developing prospect of DC distribution network[J].Automation of Electric Power Systems,2012,36(8):98-104.
    [2]宋强,赵彪,刘文华,等.智能直流配电网研究综述[J].中国电机工程学报,2013,33(25):9-19.SONG Qiang,ZHAO Biao,LIU Wenhua,et al.An overview of research on smart DC distribution power network[J].Proceedings of the CSEE,2013,33(25):9-19.
    [3]赵彪,赵宇明,王一振,等.基于柔性中压直流配电的能源互联网系统[J].中国电机工程学报,2015,35(19):4843-4851.ZHAO Biao,ZHAO Yuming,WANG Yizhen,et al.Energy internet based on flexible medium-voltage DC distribution[J].Proceedings of the CSEE,2015,35(19):4843-4851.
    [4]HE Q,HAN Y,LI L,et al.Study on the overvoltage and insulation coordination of flexible DC power distribution network[C]∥Power and Energy Engineering Conference.Hongkong,China:IEEE,2015:1-5.
    [5]王一振,赵彪,袁志昌,等.柔性直流技术在能源互联网中的应用探讨[J].中国电机工程学报,2015,35(14):3551-3560.WANG Yizhen,ZHAO Biao,YUAN Zhichang,et al.Study of the application of VSC-based DC technology in energy internet[J].Proceedings of the CSEE,2015,35(14):3551-3560.
    [6]陈家宏,赵淳,谷山强,等.我国电网雷电监测与防护技术现状及发展趋势[J].高电压技术,2016,42(11):3361-3375.CHEN Jiahong,ZHAO Chun,GU Shanqiang,et al.Present status and development trend of lightning detection and protection technology of power grid in China[J].High Voltage Engineering,2016,42(11):3361-3375.
    [7]韩永霞,卢毓欣,陈辉祥,等.±800 k V换流站的雷电侵入波过电压仿真分析[J].高电压技术,2010,36(1):218-223.HAN Yongxia,LU Yuxin,CHEN Huixiang,et al.Simulation analysis on lighting intruding overvoltage of the±800 k V converter station[J].High Voltage Engineering,2010,36(1):218-223.
    [8]董曼玲,袁智勇,厉天威,等.±500 k V双回进线的高压直流换流站雷电侵入波防护[J].高电压技术,2013,39(8):2053-2060.DONG Manling,YUAN Zhiyong,LI Tianwei,et al.Protection of±500 k V HVDC double-circuit converter station from lightning induced overvoltage[J].High Voltage Engineering,2013,39(8):2053-2060.
    [9]徐政,刘高任,张哲任.柔性直流输电网的故障保护原理研究[J].高电压技术,2017,43(1):1-8.XU Zheng,LIU Gaoren,ZHANG Zheren.Research on fault protection principle of DC grids[J].High Voltage Engineering,2017,43(1):1-8.
    [10]余占清,曾嵘,王绍安,等.配电线路雷电感应过电压仿真计算分析[J].高电压技术,2013,39(2):415-422.YU Zhanqing,ZENG Rong,WANG Shaoan,et al.Simulation calculation and analysis of lighting induced overvoltage on power distribution lines[J].High Voltage Engineering,2013,39(2):415-422..
    [11]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010.TANG Guangfu.HVDC technology based on VSC[M].Beijing,China:China Electric Power Press,2010.
    [12]许颖,徐士珩.交流电力系统过电压防护及绝缘配合[M].北京:中国电力出版社,2006.XU Ying,XU Shiheng.The over-voltage protection and insulation coordination of AC power system[M].Beijing,China:China Electric Power Press,2006.
    [13]季严飞.珠江三角洲地区输电线路雷电防护相关影响因素分析[D].广州:华南理工大学,2011.JI Yanfei.Analysis of the relevant factors of lighting protecting of transmission line in the pearl river delta region[D].Guangzhou,China:South China University of Technology,2011.
    [14]YAMADA T,MOCHIZUKI A,SAWADA J,et al.Experimental evaluation of a UHV tower model for lightning surge analysis[J].IEEE Transactions on Power Delivery,1995,10(1):393-402.
    [15]HARA T,YAMAMOTO O.Modeling of a transmission tower for lightning surge analysis[J].Generation,Transmission and Distribution,1996,143(3):283-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700