基于多源地空耦合数据的青藏高原冻融侵蚀强度评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Freeze-thaw Erosion in Qinghai-Tibet Plateau Based on Multi-source Data
  • 作者:郭兵 ; 姜琳
  • 英文作者:GUO Bing;JIANG Lin;Shandong University of Technology,School of Civil Architectural Engineering;Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology;Hubei Key Laboratory of Regional Development and Environmental Response(Hubei University);Key Laboratory for National Geographic Census and Monitoring,National Administration of Surveying,Mapping and Geoinformation;
  • 关键词:冻融侵蚀 ; 多源数据 ; 遥感 ; 冻融日循环天数 ; 降雨侵蚀力
  • 英文关键词:freeze-thaw erosion;;multi-source data;;remote sensing;;number of days of freeze-thaw cycles;;rainfall erosion
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:山东理工大学建筑工程学院;东华理工大学江西省数字国土重点实验室;区域开发与环境响应湖北省重点实验室(湖北大学);地理国情监测国家测绘地理信息局重点实验室;
  • 出版日期:2017-08-15
  • 出版单位:水土保持通报
  • 年:2017
  • 期:v.37;No.219
  • 基金:东华理工大学江西省数字国土重点实验室开放基金项目“南岭山地森林及生物多样性生态功能区生态脆弱性驱动因子定量分析研究”(DLLJ201709);; 区域开发与环境响应湖北省重点实验室开放研究基金项目[2017(B)003];; 地理国情监测国家测绘地理信息局重点实验室开放基金项目(2016NGCM02);; 山东理工大学博士科研启动基金项目(4041/416027);; 国家重大科技专项(00-Y30B14-9001-14/16);; 国家自然科学基金项目(41501425)
  • 语种:中文;
  • 页:STTB201704003
  • 页数:8
  • CN:04
  • ISSN:61-1094/X
  • 分类号:18-25
摘要
[目的]分析和探讨青藏高原冻融侵蚀成因及其空间分布格局,为研究区水土保持研究和生态环境保护提供数据支撑和决策参考。[方法]引入冻融侵蚀动力因子(冻融期降雨侵蚀力和冻融期风场强度)和冻融期降水量(表征冻融期土壤相变水量)构建冻融侵蚀评价模型,进而对青藏高原冻融侵蚀状况开展了定量评价和空间格局分析。[结果]构建的冻融侵蚀评价模型在青藏高原地区具有较高的适用性,总体评价精度为92%;青藏高原冻融侵蚀面积分布广泛,占总面积的63.68%,而非冻融侵蚀区则主要分布于柴达木盆地、雅鲁藏布江流域下游以及横断山区;冻融侵蚀强度随着坡度的上升而增加,15°~24°和≥24°坡度带上冻融侵蚀剧烈,而≤3°坡度带冻融侵蚀强度相对较小;不同植被类型区的冻融侵蚀强度空间分布格局差异显著,其中草甸的冻融侵蚀强度最小。[结论]青藏高原冻融侵蚀状况总体上属于中度侵蚀,其空间分布格局受地形、植被类型和气候影响显著。
        [Objective]To analyze and explore the causes and the spatial patterns of the freeze-thaw(FT)erosion in Qinghai-Tibet Plateau,and to provide important data support and decision-making references for soil and water conservation research and eco-environment protection in this region.[Methods]The driving force factors of FT erosion(the rainfall erosion and wind field strength during FT period)and the precipitation during FT period(indicating the soil water content)were introduced to establish an evaluation system of FT erosion and then the spatial distribution pattern of FT erosion were analyzed.[Results]The evaluation model of FT erosion had high applicability in Qinghai-Tibet Plateau with the overall evaluation accuracy of 92%.The FT erosion area were widely distributed,covering 63.68% of the total area;and the non-FT erosion zoneswere mainly distributed in the lower reaches of the Yarlung Zangbo River Basin,Qaidam Basin and the Hengduan mountains.The intensity of FT erosion increased with the increase of slope.The erosion intensities of 15°~24°and≥24°slope zone were severe while that of≤3°slope zone was relatively slight.The spatial distribution patterns of FT erosion intensity among different vegetation types were significantly different.The FT erosion intensities of broad leaved forest and crops were relatively severe while that of meadow was slighter.[Conclusion]The FT erosion of Qinghai-Tibet Plateau belonges to the level of moderate erosion and the spatial patterns are significantly affected by terrain,plant types and climate factors.
引文
[1]刘淑珍,刘斌涛,陶和平,等.我国冻融侵蚀现状及防治对策[J].中国水土保持,2013(10):41-44.
    [2]张建国,刘淑珍.西藏冻融侵蚀空间分布规律[J].水土保持研究,2008,15(5):1-6.
    [3]史展,陶和平,刘斌涛,等.基于GIS的三江源区冻融侵蚀评价与分析[J].农业工程学报,2012,28(19):214-221.
    [4]Guo Bing,Zhou Yi,Wang Shixin,et al.An estimation method of soil freeze-thaw erosion in the Qinghai-Tibet Plateau[J],Natural Hazards,2015,78(3):1843-1853.
    [5]范吴明,蔡强国.冻融侵蚀研究进展[J].中国水土保持科学,2003,1(4):50-55.
    [6]王随继.黄河中游冻融侵蚀的表现方式及其产沙能力评估[J].水土保持通报,2004,24(2):1-5.
    [7]李辉霞,刘淑珍,钟祥浩,等.基于GIS的西藏自治区冻融侵蚀敏感性评价[J].中国水土保持,2005(7):44-46.
    [8]Zhang Jianguo,Liu Shuzhen,Yang Siquan.The classification and assessment of freeze-thaw erosion in Tibet[J].Journal of Geographical Sciences,2007,4(2):165-174.
    [9]Zhang Jianguo,Yang Yonghong,Liu Shuzhen.Classification and assessment of freeze-thaw erosion in Tibet,China[J].Wuhan University Journal of Natural Sciences,2005,10(4):635-640.
    [10]Demidov V V,Ostroumov V Y,Nikitishena I A,et al.Seasonal freezing and soil erosion during snowmelt[J].Eurasian Soil Science,1995,28(10):78-87.
    [11]Eigenbrod K D.Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine grained soils[J].Canadian Geotechnical Journal,1996,33(4):529-537.
    [12]Sharratt B S,Lindstrom M J,Benoit G R,et al.Runoff and soil erosion during spring thaw in the northern U.S Corn Belt[J].Journal of Soil and Water Conservation,2002,55(4):487-494.
    [13]吴万贞,刘峰贵.三江源地区冻融侵蚀动力分析及其分布特点[J].青海师范大学学报:自然科学版,2010,26(1):57-61.
    [14]景国臣,任宪平,刘丙友,等.黑龙江省冻融侵蚀形式及其危害[J].中国水土保持科学,2003,1(3):99-101.
    [15]李瑞平,史海滨,赤江刚夫,等.冻融期气温与土壤水盐运移特征研究[J].农业工程学报,2007,23(4):70-74.
    [16]施建成,蒋玲梅,张立新.多频率多极化地表辐射参数化模型[J].遥感学报,2006,10(4):502-514.
    [17]盛煜,李静,吴吉春,等.基于GIS的疏勒河流域上游多年冻土分布特征[J].中国矿业大学学报,2010,39(1):32-39.
    [18]李成六,马金辉,唐志光,等.基于GIS的三江源区冻融侵蚀强度评价[J].中国水土保持,2011(4):41-43.
    [19]Zhao Tianjie,Zhang Lixin,Jiang Lingmei,et al.A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J].Hydrological Processes,2011,25(11):1704-1716.
    [20]张建国,刘淑珍,范建容.基于GIS的四川省冻融侵蚀界定与评价[J].山地学报,2005,23(2):248-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700