预制复合保温墙体单面受火后轴压承载力试验研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on axial compressive behaviors of prefabricated composite thermal insulation walls after single-side fire exposure
  • 作者:付倩 ; 朱筱俊 ; 梁书亭 ; 杨建 ; 李向民 ; 许清风 ; 高明珠
  • 英文作者:Fu Qian;Zhu Xiaojun;Liang Shuting;Yang Jian;Li Xiangmin;Xu Qingfeng;Gao Mingzhu;School of Civil Engineering,Southeast University;Architects & Engineers Co.,Ltd.,Southeast University;Shanghai Key Laboratory of Engineering Structure Safety,Shanghai Research Institute of Building Sciences;
  • 关键词:预制复合保温墙体 ; 膨胀聚苯乙烯板 ; 火灾 ; 保温层 ; 受火后 ; 轴压性能
  • 英文关键词:prefabricated composite thermal insulation walls;;expandable polystyrene board;;fire exposure;;insulation layer;;post-fire;;axial compressive behavior
  • 中文刊名:DNDY
  • 英文刊名:东南大学学报(英文版)
  • 机构:东南大学土木工程学院;东南大学建筑设计研究院有限公司;上海市建筑科学研究院上海市工程结构安全重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:Journal of Southeast University(English Edition)
  • 年:2018
  • 期:v.34
  • 基金:The National Key Research and Development Program of China(No.2016YFC0701703);; the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J);; the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
  • 语种:英文;
  • 页:DNDY201802012
  • 页数:9
  • CN:02
  • ISSN:32-1325/N
  • 分类号:85-93
摘要
为了研究内、外页钢筋混凝土墙板、EPS板及钢套筒连接件组成的预制复合保温墙体火灾后的轴压承载能力,对4个预制复合保温墙体试件(2个常温试件及2个火后试件)进行了火灾后轴压承载力试验.观察了其破坏形态、裂缝开展情况;测试了其轴压承载力、墙体面外位移、混凝土及钢筋应变.试验结果表明:火后试件的抗压极限承载力均低于常温试件的极限承载力;保温层厚度40 mm,降幅为20.8%,厚度为60mm,降幅为16.8%;火后墙体的最大平面外位移值明显比常温墙体大,在相同荷载作用下,保温层厚度越大,墙体的平面外位移越大;火后墙体的混凝土、钢筋应变总是比常温墙体的大,保温厚度较大墙体的混凝土、钢筋应变均大于保温层厚度较小墙体的应变.
        The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene( EPS) boards and steel sleeve connectors is investigated. An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out. Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire. The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested. The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens; when the insulation board thicknesses are 40 mm and 60 mm, the decrease amplitudes are 20. 8% and 16. 8%, respectively. The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases. Moreover, the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
引文
[1]Mousa M A,Uddin N.Structural behavior and modeling of full-scale composite structural insulated wall panels[J].Engineering Structures,2012,41:320-334.DOI:10.1016/j.engstruct.2012.03.028.
    [2]Mathieson H,Fam A.Axial loading tests and simplified modeling of sandwich panels with GFRP skins and soft core at various slenderness ratios[J].Journal of Composites for Construction,2015,19(2):04014040.DOI:10.1061/(asce)cc.1943-5614.0000494.
    [3]Abdolpour H,Escusa G,Sena-Cruz J M,et al.Axial performance of jointed sandwich wall panels[J].Journal of Composites for Construction,2017,21(4):04017009.DOI:10.1061/(asce)cc.1943-5614.0000785.
    [4]Naito C,Hoemann J,Beacraft M,et al.Performance and characterization of shear ties for use in insulated precast concrete sandwich wall panels[J].Journal of Structural Engineering,2010,138(1):52-61.DOI:10.1061/(asce)st.1943-541x.0000430.
    [5]Xiong J,Ghosh R,Ma L,et al.Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J].Composite Structures,2014,116:793-804.DOI:10.1016/j.compstruct.2014.06.006.
    [6]Tomlinson D,Fam A.Analytical approach to flexural response of partially composite insulated concrete sandwich walls used for cladding[J].Engineering Structures,2016,122:251-266.DOI:10.1016/j.engstruct.2016.04.059.
    [7]Ricci I,Palermo M,Gasparini G,et al.Results of pseudostatic tests with cyclic horizontal load on cast in situ sandwich squat concrete walls[J].Engineering Structures,2013,54:131-149.DOI:10.1016/j.engstruct.2013.03.046.
    [8]Choi I,Kim J H,You Y C.Effect of cyclic loading on composite behavior of insulated concrete sandwich wall panels with GFRP shear connectors[J].Composites Part B:Engineering,2016,96:7-19.DOI:10.1016/j.compositesb.2016.04.030.
    [9]Palermo M,Trombetti T.Experimentally-validated modelling of thin RC sandwich walls subjected to seismic loads[J].Engineering Structures,2016,119:95-109.DOI:10.1016/j.engstruct.2016.03.070.
    [10]Palermo M,Ricci I,Silvestri S,et al.Preliminary interpretation of shaking-table response of a full-scale 3-storey building composed of thin reinforced concrete sandwich walls[J].Engineering Structures,2014,76:75-89.DOI:10.1016/j.engstruct.2014.06.024.
    [11]Woltman G,Noel M,Fam A.Experimental and numerical investigations of thermal properties of insulated concrete sandwich panels with fiberglass shear connectors[J].Energy and Buildings,2017,145:22-31.DOI:10.1016/j.enbuild.2017.04.007.
    [12]Zhang L,Bai Y,Chen W,et al.Thermal performance of modular GFRP multicellular structures assembled with fire resistant panels[J].Composite Structures,2017,172:22-33.DOI:10.1016/j.compstruct.2017.03.076.
    [13]Pereira D,Gago A,Proen9a J,et al.Fire performance of sandwich wall assemblies[J].Composites Part B:Engineering,2016,93:123-131.DOI:10.1016/j.compositesb.2016.03.001.
    [14]Xiao J Z,Xie Q H,Li Z W,et al.Fire resistance and post-fire seismic behavior of high strength concrete shear walls[J].Fire Technology,2016,53(1):65-86.DOI:10.1007/s10694-016-0582-6.
    [15]Xiao J Z,Li J,Jiang F.Research on the seismic behavior of HPC shear walls after fire[J].Materials and Structures,2004,37(8):506-512.
    [16]Go C G,Tang J R,Chi J H,et al.Fire-resistance property of reinforced lightweight aggregate concrete wall[J].Construction and Building Materials,2012,30:725-733.DOI:10.1016/j.conbuildmat.2011.12.081.
    [17]Fernando P L N,Jayasinghe M T R,Jayasinghe C.Structural feasibility of expanded polystyrene(EPS)based lightweight concrete sandwich wall panels[J].Construction and Building Materials,2017,139:45-51.DOI:10.1016/j.conbuildmat.2017.02.027.
    [18]Peng Y Y,Qian J R,Wang Y H.Cyclic performance of precast concrete shear walls with a mortar-sleeve connection for longitudinal steel bars[J].Materials and Structures,2016,49(6):2455-2469.DOI:10.1617/s11527-015-0660-0.
    [19]Ghandehari M,Behnood A,Khanzadi M.Residual mechanical properties of high-strength concretes after exposure to elevated temperatures[J].Journal of Materials in Civil Engineering,2010,22(1):59-64.DOI:10.1061/(asce)0899-1561(2010)22:1(59).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700