纠缠交换对噪声下量子小世界网络纠缠渗流的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of entanglement swapping on quantum small-world networks entanglement percolation in noisy scenario
  • 作者:毛俊 ; 马雷
  • 英文作者:MAO Jun;MA Lei;Institute of Physics and Material Science, East of China Normal University;
  • 关键词:量子信息 ; 量子小世界网络 ; 纠缠渗流 ; 纠缠交换 ; 保真度 ; 平均集团
  • 英文关键词:quantum information;;quantum small-world network;;entanglement percolation;;entanglement swapping;;fidelity;;average component size
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:华东师范大学物理与材料科学学院;
  • 出版日期:2018-11-15
  • 出版单位:量子电子学报
  • 年:2018
  • 期:v.35;No.185
  • 基金:国家自然科学基金,11174081~~
  • 语种:中文;
  • 页:LDXU201806005
  • 页数:7
  • CN:06
  • ISSN:34-1163/TN
  • 分类号:29-35
摘要
采用生成函数和纠缠交换的方法,研究了混态情况下量子小世界网络的纠缠渗流.基于理论计算及数值模拟,分析了小世界网络归一化平均集团的大小和路径长度的关系.结果表明小世界网络在较短的路径下具有较大的平均集团.进一步阐明了量子小世界网络具有较大的聚类特性和较短的平均距离,发现平均集团随着保真度的增加而增大,且增大小世界网络的平均度可以降低信息传递所需的保真度.通过对混态进行纠缠交换.可提高最大纠缠态的保真度,说明纠缠交换可以优化量子小世界网络的纠缠渗流.
        Entanglement percolation of quantum small-world networks in mixed state is investigated by means of generating function and entanglement swapping method. Based on theoretical calculation and numerical simulation, the relationship between normalized average component size and path length in smallworld networks is analyzed. Results show that the small world networks have a larger average component size under the shorter paths in small-world network. It is further demonstrated that quantum small-world networks have larger aggregation and shorter average paths. It is found that the average component size increases with the increase of fidelity, and increasing the average degree of small-world networks can reduce the fidelity required for information delivery. The fidelity of maximum entangled states can be improved by entanglement swapping of mixed states, which shows that entanglement swapping can optimize the entanglement percolation in quantum small-world networks.
引文
[1] Komar P, Kessler E M, Bishof M, et al. A quantum network of clocks[J]. Nature Physics, 2014, 10(8):582-587.
    [2] Pfaff W, Hensen B J, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits[J]. Science, 2014, 345(6196):532-535.
    [3] Wilde M M. Quantum Information Theory[M]. Cambridge:Cambridge University Press, 2013.
    [4] Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information:An outlook[J]. Science, 2013,339(6124):1169-1174.
    [5] Giuseppe V, Davide B, Daniele D, et al. Experimental satellite quantum communications[J]. Physical Review Letters, 2015, 115(4):040502.
    [6] Ma X S, Herbst T, Scheidl T, et al. Quantum teleportation over 143 kilometres using active feed-forward[J].Nature, 2012, 489(7415):269-273.
    [7] Lapeyre Jr G J, Wehr J, Lewenstein M. Enhancement of entanglement percolation in quantum networks via lattice transformations[J]. Physical Review A, 2009, 79(4):042324.
    [8] Broadfoot S, Dorner U, Jaksch D. Entanglement percolation with bipartite mixed states[J]. Europhysics Letters,2009, 88(5):50002.
    [9] Cuquet M, Calsamiglia J. Entanglement percolation in quantum complex networks[J]. Physical Review Letters,2009, 103(24):240503.
    [10] Zhang Wanhang, Ma Lei. Influence of entanglement swapping on quantum random networks robustness[J].Chinese Journal of Quantum Electronics(量子电子学报),2015, 32(6):700-705(in Chinese).
    [11] Wang Yuhan, Ma Lei. Entanglement percolation of quantum scale-free network under random attacks and targeted failures[J]. Chinese Journal of Quantum Electronics(量子电子学报),2017, 34(5):596-602(in Chinese).
    [12] Zhou Lei, Wu Liang, Zhu Shiqun, et al. Entanglement percolation in small-world quantum networks[J]. Acta Sinica Quantum Opica(量子光学学报),2012, 18(2):136-142(in Chinese).
    [13] Veldhorst M, Hwang J C C, et al. An addressable quantum dot qubit with fault-tolerant control-fidelity[J].Nature Nanotechnology, 2014, 9(12):981-985.
    [14] Shao L H, Xi Z, Fan H, et al. Fidelity and trace-norm distances for quantifying coherence[J]. Physical Review A,2015, 91(4):042120.
    [15] Rajarshi P, Somshubhro B, Sibasish G, et al. Entanglement sharing through noisy qubit channels:One-shot optimal singlet fraction[J]. Physical Review A, 2014, 90(5):052304.
    [16] Serrano M A, BogunáM. Percolation and epidemic thresholds in clustered networks[J]. Physical Review Letters,2006, 97(8):088701.
    [17] Liu Xueming, Pan Linqiang, Stanley H E, et al. Controllability of giant connected components in a directed network[J]. Physical Review E, 2017, 95(4):042318.
    [18] Cuquet M, Calsamiglia J. Limited-path-length entanglement percolation in quantum complex networks[J]. Physical Review A, 2011, 83(3):032319.
    [19] Titze M, Bahrdt J, Wustefeld G, et al. Symplectic tracking through straight three dimensional fields by a method of generating functions[J]. Physical Review Special Topics-Accelerators and Beams, 2016, 19(1):014001.
    [20] Langer N, Pedroni A, Jancke L. The problem of thresholding in small-world network analysis[J]. PloS One, 2013,8(1):e53199.
    [21] Li Wenlin, Li Chong, Song Heshan, et al. Quantum synchronization and quantum state sharing in an irregular complex network[J]. Physical Review E, 2017, 95(2):022204.
    [22] Su X, Tian C, Deng X, et al. Quantum entanglement swapping between two multipartite entangled states[J].Physical Review Letters, 2016, 117(24):240503.
    [23] Song W, Yang M, Cao Z L. Purifying entanglement of noisy two-qubit states via entanglement swapping[J].Physical Review A, 2014, 89(1):014303.
    [24] Zanardi P,Quan H T,Wang X,et al. Mixed-state fidelity and quantum criticality at finite temperature[J].Physical Review A, 2007, 75(3):032109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700