脉冲等离子体推力器电源处理单元技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Pulsed Plasma Thruster Power Processing Unit
  • 作者:徐友慧 ; 王少宁 ; 陈昶文 ; 任海玢 ; 徐恒通
  • 英文作者:XU You-hui;WANG Shao-ning;CHEN Chang-wen;REN Hai-bin;XU Heng-tong;Lanzhou Institute of Physics;
  • 关键词:脉冲等离子体推力器 ; 电推进系统 ; 电源处理单元 ; 放电点火电路 ; LC振荡电路
  • 英文关键词:Pulsed plasma thruster;;Electric propulsion system;;Power processing unit;;Discharge initiation pulse circuit;;LC resonant tank circuit
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:兰州空间技术物理研究所;
  • 出版日期:2019-01-07 14:03
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:国家自然科学基金(11705074)
  • 语种:中文;
  • 页:TJJS201906028
  • 页数:8
  • CN:06
  • ISSN:11-1813/V
  • 分类号:239-246
摘要
为了进一步提高脉冲等离子体推力器点火的可靠性和使用寿命,采用理论计算和地面试验的方法,设计了一款可应用于立方体纳卫星脉冲等离子体推力器放电能量为2.6J的电源处理单元,其放电点火电路是基于LC振荡电路,且对放电点火电路的性能、开关管的电流应力和整个电源处理单元的稳定可靠性进行了研究。结果表明:LC振荡放电点火电路中,开关器件的电流应力较小,提高了整个电路的可靠性;该放电点火电路在输入电压800V时,点火电流的峰值可达到100A~150A,这种大电流放电有助于清除火花塞表面的积碳。
        In order to improve the life and reliability when igniting the pulsed plasma thrusters, a powerprocessing unit of discharging energy 2.6 J applied for microsatellites pulsed plasma electric propulsion systemwas designed by using theoretical calculation and ground test methods,its' discharge initiation pulse circuit wasbased on a LC resonant tank circuit. The performance of discharge initiation pulse circuit and the current stress ofthe switch,as well as the stable reliability of the whole power processing unit were studied. The results show thecurrent stress of the switch is smaller in the LC resonant tank circuit,improving the reliability of the whole cir-cuit. Besides,the peak value of ignition current can reach 100 A~150 A when the input voltage of this dischargeinitiation pulse circuit is 800 V. This high current discharge contributes to clearing the carbon deposition on thesurface of the spark plug.
引文
[1]谢泽华.脉冲等离子体推力器羽流数值模拟与实验研究[D].长沙:国防科学技术大学,2008.
    [2]张锐.脉冲等离子体推力器工作过程及羽流特性理论与实验研究[D].长沙:国防科学技术大学,2013.
    [3]吴汉基,安世明.俄罗斯等离子体发动机的研究和应用[J].中国航天,1993,(9):40-43.
    [4]牛禄,王宏伟,杨威.用于微小卫星推进装置的脉冲等离子体推力器[J].上海航天,2004,(5):39-43.
    [5] Burton R L. Pulsed Plasma Thruster[J]. Journal of Propulsion and Power,1998,(5):716-735.
    [6] Tilley D L. Life Extension Strategies for Space Shuttle—Deployed Small Satellites Using a Pulsed Plasma Thruster[R]. AIAA 96-2730.
    [7]杨乐,李自然,尹乐,等.脉冲等离子体推力器研究综述[J].火箭推进,2006,(4):32-36.
    [8] Vondra R J. The MIT Lincon Laboratory Pulsed Plasma Thruster[R]. AIAA 76-998.
    [9] Vondra R J,Thomassen K I. A Flight Qualified PulsedElectric Thruster for Satellite Control[R]. AIAA 73-1067.
    [10] Brill Y,Eisner A,Osborn L. The Flight Application of a Pulsed Plasma Micro Thruster:The NOVA Satellite[R]. AIAA 82-1956.
    [11] Ebert W L,Kowal S J. Operation NOVA Spacecraft Teflon Pulsed Plasma Thruster System[R]. AIAA 89-2497.
    [12] Andrew Hoskins, Christopher Rayburn, Charles Sarmiento. Pulsed Plasma Thruster Electromagnetic Compatibility:History,Theory,and the Flight Validation on EO-1[R]. AIAA 2003-5016.
    [13] An Shi-Ming. MDT-2A Teflon Pulsed Plasma Thruster[J]. Journal of Spacecraft,1982,19(5):385-386.
    [14]鲁文涛,蒋远大,吴汉基,等.脉冲等离子体推力器地面试验电源[J].科学技术与工程,2010,(10):2384-2389.
    [15] Benson S W,Arrington L A,Hoskins W A,et al. Development of a PPT for the EO-1 Spacecraft[R]. AIAA99-2276.
    [16] Scott W Benson,John R Frus. Advanced Pulsed Plasma Thruster Electrical Components[R]. AIAA 2001-3894.
    [17]胡宗森. 40J脉冲等离子体推力器(PPT)性能研究[D].北京:中国科学院研究生院空间科学与应用研究中心,2002.
    [18]吴汉基,蒋远大,张志远,等.微小卫星的在轨推进技术[J].火箭推进,2006,(6):200-207.
    [19] Burton R L,Turchi P J. Pulsed Plasma Thruster[J].Journal of Propulsion and Power,1998,14(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700