Bi在固液混合相区的冲击参数测量及声速软化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone
  • 作者:李雪梅 ; 俞宇颖 ; 谭叶 ; 胡昌明 ; 张祖根 ; 蓝强 ; 傅秋卫 ; 景海华
  • 英文作者:Li Xue-Mei;Yu Yu-Ying;Tan Ye;Hu Chang-Ming;Zhang Zu-Gen;Lan Qiang;Fu Qiu-Wei;Jing Hai-Hua;Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP;
  • 关键词:声速 ; 冲击熔化 ; 界面速度剖面 ; Bi
  • 英文关键词:sound velocity;;shock-induced melt;;wave profile;;Bismuth
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室;
  • 出版日期:2018-01-30 13:15
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:中国工程物理研究院科学技术发展基金(批准号:2015B0101006)资助的课题~~
  • 语种:中文;
  • 页:WLXB201804020
  • 页数:7
  • CN:04
  • ISSN:11-1958/O4
  • 分类号:191-197
摘要
冲击相变与熔化作为材料特性的一项重要研究内容,对于多相物态方程构建具有重要意义.本文利用追赶稀疏原理和阻滞法,基于火炮加载技术获得了17.3—28.3 GPa范围内纯铋(Bi)的高精度声速数据和Hugoniot参数,分析了声速软化规律,得到固-液混合相区Bi材料声速随压力的近似线性递减关系C=3.682-0.015p,并进一步确定Bi的冲击熔化压力区间为18—27.4 GPa.同时,Bi/Li F界面速度剖面的预期平台段在固液混合相区表现出渐进爬升的异常特征,分析认为,该现象与Bi材料的非均匀熔化动力学行为及冲击熔化完成时间尺度较长有关.
        Polymorphic phase transformation and melting under shock wave loading are important for studying the material dynamic mechanical behavior and equation of state in condensed matter physics. In this paper, the accurate Hugoniot parameter and sound velocity of shocked pure bismuth(Bi) in a pressure range of 17.3–28.3 GPa are obtained by using flyer impact method and rarefaction overtaking technique, respectively, and the sound velocity softening trend in shockinduced melting zone and the melting kinetics of Bi are then analyzed. In each experiment, six Bi samples with different thickness values are affected by oxygen-free-high-conducticity copper flyer fired through power gun. Shock wave velocity and particle velocity in Bi are experimentally determined through measuring the impact velocity and shock wave time in the thickest sample by photon Doppler velocimetry(PDV) technique. The velocity profiles on each interface between Bi and lithium fluoride(Li F) window are measured by displacement interferometer system of any reflector(DISAR),and then the sound velocity of shocked Bi is determined using the rarefaction overtaking method. The analyses of our results show that the softening of sound velocity of Bi approximatively satisfies the linear relation of C_s = 3.682-0.015 p in the solid-liquid coexistence zone, and the pressure zone of the solid-liquid coexistence phase is further affirmed to be in a range of 18–27.4 GPa. Additionally, the obtained Hugoniot data for Bi in this paper supply a gap in the pressure zone of solid-liquid mixing phase. The quadratic equation with the expression of D_s = 0.401 + 3.879 up-0.876 u_p~2 can better demonstrate the relation between shock wave velocity and particle velocity than a linear one when the particle velocity lies in a range of 0.5–1.0 km/s, and this non-linear property maybe has a relationship with the shock-induced melting of Bi. Finally, our wave profile measurement of the Bi/Li F interface shows peculiar ramp characteristics in the expected velocity plateau zone in the pressure zone of solid-liquid coexistence phase, which may be associated with both the nonhomogeneous melting kinetics and the long time scale of melting for bismuth.
引文
[1]Bancroft D,Peterson E L,Minshall S 1956 J.Appl.Phys.27 291
    [2]Larson D B 1967 J.Appl.Phys.38 1541
    [3]Romain J P 1974 J.Appl.Phys.45 135
    [4]Asay J R 1977 J.Appl.Phys.48 2832
    [5]Smith R F,Eggert J H,Saculla M D,Jankowski A F,Bastea M,Hicks D G,Collins G W 2008 Phys.Rev.Lett.101 065701
    [6]Colvin J D,Reed B W,Jankowski A F,Kumar M,Paisley D L,Swift D C,Tierney T E,Frank A M 2007 J.Appl.Phys.101 084906
    [7]Gorman M G,Briggs R,Mc Brid E E,Higginbotham A,Arnold B,Eggert J H,Fratanduono D E,Galtier E,Lazicki A E,Lee H J,Liermann H P,Nagler B,Rothkirch A,Smith R F,Swift D C,Collins G W,Wark J S,Mc Mahon M I 2015 Phys.Rev.Lett.115 095701
    [8]Jensen B J,Cherne F J,Cooley J C,Zhernokletov M V,Kovalev A E 2010 Phys.Rev.B 81 214109
    [9]Yu Y Y,Tan Y,Dai C D,Li X M,Li Y H,Wu Q,Tan H 2014 Appl.Phys.Lett.105 201910
    [10]Hu J B,Zhou X M,Dai C D,Tan H,Li J B 2008 J.Appl.Phys.104 083520
    [11]Song P,Cai L C,Tao T J,Yuan S,Chen H,Huang J,Zhao X W,Wang X J 2016 J.Appl.Phys.120 195101
    [12]Tan Y,Yu Y Y,Dai C D,Tan H,Wang Q S,Wang X2011 Acta Phys.Sin.60 106401(in Chinese)[谭叶,俞宇颖,戴诚达,谭华,王青松,王翔2011物理学报60 106401]
    [13]Tan Y,Yu Y Y,Dai C D,Jin K,Wang Q S,Hu J B,Tan H 2013 J.Appl.Phys.113 093509
    [14]Weng J D,Tan H,Hu S L,Ma Y,Wang X 2005 Sci.Instrum Rev.76 093301
    [15]Jin F Q 1999 Introduction to Experimental Equation of State(2th Ed.)(Beijing:Science Press)p200(in Chinese)[经福谦1999实验物态方程导引(第二版)(北京:科学出版社)第200页]
    [16]Jensen B J,Holtkamp D B,Rigg P A,Dolan D H 2007J.Appl.Phys.101 013523
    [17]Mitchell A C,Nellis W J 1981 J.Appl.Phys.52 3363
    [18]Marsh S P 1981 LASL Shock Hugoniot Data(California:University of California Press)p23
    [19]Wetta N,Pelissier J L 2001 Physica A 289 479
    [20]Hayes D B 1975 J.Appl.Phys.46 3438

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700