劈裂纳米矩形的Fano共振效应及对不同偏振角入射激光的衰减作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fano resonance effect of split nano-rectangle and the intensity attenuation of laser with different polarization angles
  • 作者:陈万里 ; 冯远明 ; 林旺
  • 英文作者:CHEN Wan-li;FENG Yuan-ming;LIN Wang;Department of Biomedical Engineering,College of Precision Instrument and Optoelectronics Engineering,Tianjin University;
  • 关键词:劈裂金属纳米矩形 ; 传感器 ; Fano共振 ; 消光光谱 ; 激光强度
  • 英文关键词:split metal nano-rectangle;;sensor;;Fano resonance;;extinction spectra;;laser intensity
  • 中文刊名:GDZJ
  • 英文刊名:Journal of Optoelectronics·Laser
  • 机构:天津大学精密仪器与光电子工程学院生物医学工程系;
  • 出版日期:2017-05-15
  • 出版单位:光电子·激光
  • 年:2017
  • 期:v.28;No.263
  • 基金:天津市自然科学基金(14JCYBJC30500)资助项目
  • 语种:中文;
  • 页:GDZJ201705015
  • 页数:7
  • CN:05
  • ISSN:12-1182/O4
  • 分类号:101-107
摘要
利用时域有限差分(FDTD)法模拟了所设计的一种新型劈裂纳米矩形结构消光光谱、近场增强和电荷分布情况。研究了在劈裂金属纳米矩形中,Fano共振形成机理、结构参数对Fano共振峰的影响,以及当入射场偏振方向不同时在红外波长处形成的消光率同等强度骤增现象。研究表明,当改变周围环境折射率时,Fano共振峰有一个非常明显的移动,品质因数FoM可以达到11.8,这种新型劈裂纳米矩形有很好的传感特性。入射光沿不同偏振方向穿过劈裂金属纳米矩形时,在特定红外波长处形成同等强度的消光率增强,对不同偏振角激光强度形成统一衰减的特性使其在混合偏振角激光的强度衰减等光学方面有着重要的应用价值。
        In the paper,we simulate the extinction spectra,near field enhancement and charge distribution of the new split nano-rectangle by using the finite difference time domain(FDTD).Then we investigate the formation mechanism of the Fano resonance in the split metal nano-rectangle,the effects of structural parameters on Fano resonance peak,the change of the extinction spectra with the incident fields in different polarization directions.The results show that Fano resonance peak of the new split nano-rectangle can move obviously when ambient refractive index changes and the FoM can reach 11.8,this shows that the new splitting nano-rectangle has a good sensing property.The same intensity of extinction rate can be seen in the specific infrared wavelengths when the incident light through the split metal nano-rectangleis in different polarization directions.The same extinction rate of laser intensity in different polarization directions has important application on forming uniform homogeneous attenuation for laser with different polarization angles.
引文
[1]Park J H,Byun J Y,Mun H,et al.A regeneratable,labelfree,localized surface plasmon resonance(LSPR)aptasensor for the detection of ochratoxin A[J].Biosensors&Bioelectronics,2014,59(30):321-327.
    [2]Bansal A,Sekhon J S,Verma S S.Scattering efficiency and LSPR tunability of bimetallic Ag,Au,and Cu nanoparticles[J].Plasmonics,2013,9(1):143-150.
    [3]Zhang S,Bao K,Halas N J,et al.Substrate-induced fano resonances of a plasmonic nanocube:a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J].Nano Letters,2011,11(4):1657-1663.
    [4]He J,Fan C,Wang J,et al.A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance[J].Journal of Optics,2013,15(2):25007-25013(7).
    [5]ZHANG Xing-fan,YAN Xin,LIU Feng-shou.Surface enhanced Raman scattering of molecules adsorbed on metal nanostructures[J].Journal of Optoelectronics·Laser,2014,25(6):1220-1224.张兴坊,闫昕,刘凤收.纳米结构分子吸附引起的表面增强拉曼散射研究[J].光电子·激光,2014,25(6):1220-1224.
    [6]ZHANG Wei,SUN Huei,LIU Ru-ping,et al.Analysis of LSPR extinction properties of two-dimensional Au nanoparticle arrays[J].Journal of Optoelectronics·Laser,2012,23(5):1005-1010.张维,孙辉,刘儒平,等.Au纳米粒子二维周期阵列的LSPR消光特性分析[J].光电子·激光,2012,23(5):1005-1010.
    [7]Xu L,Yan W,Ma W,et al.SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers[J].Advanced Materials,2015,27(10):1799-1799.
    [8]Luo S C,Sivashanmugan K,Liao J D,et al.Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro A review[J].Biosensors&Bioelectronics,2014,61(1):232-240.
    [9]Cushing S K,Wu N.Plasmon-enhanced solar energy harvesting[J].Electrochemical Society Interface,2013,22(2):63-67.
    [10]Li K,Wang Y,Cai F,et al.Nonlinear optical properties of Au/Ag alloyed nanoboxes and their applications in both in vitro and in vivo bioimaging under long-wavelength femtosecond laser excitation[J].RSC Advances,2015,5(4):2851-2856.
    [11]Hakonen A,Svedendahl M,Ogier R,et al.Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography[J].Nanoscale,2015,7(21):9405-9410.
    [12]Li G,Li Q,Xu L,et al.Numerical realization of fano-type resonances in cascaded plasmonic heterodimers for refractive index sensing[J].Plasmonics,2015,10(6):1401-1407.
    [13]Dabidian N,Kholmanov I,Khanikaev A B,et al.Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces[J].Acs Photonics,2015,2(2):216-227.
    [14]Pezeshki H,Darvish G.Design of photonic crystal microcavity based optical switches using Fano resonance effect[J].Optik-International Journal for Light and Electron Optics,2015,126(23):4202-4205.
    [15]Ansell D,Radko I P,Han Z,et al.Hybrid graphene plasmonic waveguide modulators[J].Nature communications,2015,6:8846.
    [16]Liu Q,Li S,Chen H,et al.High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film[J].Applied Physics Express,2015,8(4):046701.
    [17]LI Zhao,YU Xian-tong,QIN Cui-fang,et al.Localized surface plasmon resonance properties of metal nanoparticle dimers[J].Journal of Optoelectronics·Laser,2015,26(7):1423-1428.李朝,俞宪同,秦翠芳,等.金属纳米二聚体结构的局域表面等离子体激元共振特性研究[J].光电子·激光,2015,26(7):1423-1428.
    [18]CHEN Si-meng,ZHANG Jie,GONG Tian-cheng,et al.Ranman enhancement characteristics of Ag nanoparticles modifed multimode fiber[J].Journal of Optoelectronics·Laser,2015,26(11):2055-2061.陈思孟,张洁,龚天诚,等.Ag纳米粒子修饰多模光纤的拉曼增强特性实验[J].光电子·激光,2015,26(11):2055-2061.
    [19]Le K Q,Bai J,Nguyen H P T.Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles[J].Journal of Luminescence,2016,173:199-202.
    [20]Wang B,Xie Z,Feng S,et al.Ultrahigh Q-factor and figure of merit Fano metamaterial based on dark ring magnetic mode[J].Optics Communications,2015,335:60-64.
    [21]Liu S D,Yang Z,Liu R P,et al.Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings[J].Acs Nano,2012,6(7):6260-6271.
    [22]Ding Y,Liao Z.Asymmetric split nanorings for Fano induced plasmonic sensor in visible region[J].Physica B:Condensed Matter,2015,464:51-56.
    [23]Cetin A E,Altug H.Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing[J].ACS nano,2012,6(11):9989-9995.
    [24]Liu F,Jin J.Double Fano resonances in plasmon coupling nanorods[J].Journal of Optics,2015,17(5):055004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700