环氧乙烷水合制乙二醇多相催化剂的最新进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in heterogeneous catalysts for ethylene glycol production via hydration of ethylene oxide
  • 作者:陶桂菊 ; 何文军 ; 俞峰萍 ; 李亚男 ; 杨为民
  • 英文作者:TAO Guiju;HE Wenjun;YU Fengping;LI Yanan;YANG Weimin;Sinopec Shanghai Research Institute of Petrochemical Technology;
  • 关键词:乙二醇 ; 多相催化剂 ; 环氧乙烷 ; 水合 ; 节能降耗
  • 英文关键词:mono ethylene glycol;;heterogeneous catalyst;;ethylene oxide;;hydration;;low cost and energy consumption
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油化工股份有限公司上海石油化工研究院;
  • 出版日期:2017-11-05
  • 出版单位:化工进展
  • 年:2017
  • 期:v.36;No.314
  • 基金:第61批中国博士后科学基金项目(2017M611643)
  • 语种:中文;
  • 页:HGJZ201711001
  • 页数:13
  • CN:11
  • ISSN:11-1954/TQ
  • 分类号:6-18
摘要
乙二醇是一种重要、但我国自给率却长期不高于40%的大宗化工原料。目前工业上生产乙二醇采用的高水比(水和环氧乙烷进料摩尔比)非催化直接水合技术存在能耗高的问题。发展低水比催化水合技术势在必行。立足于催化与失活机制,本文首次详细而深入地介绍了新型树脂类、金属氧化物基、CoⅢ(Salen)基和Sn掺杂的沸石类催化剂,并针对它们各自的缺点提出了改进措施与解决方案。如提出选取新型官能团以及不同长径比碳纳米管、不同层数石墨烯和纳米氧化物为添加剂以提升离子交换树脂的活性、耐热性和耐溶胀性;合成不同酸度的多孔铌酸材料以提升铌酸催化剂的活性;从有机配体和轴配体两方面出发发展新型CoⅢ(Salen)基催化活性中心以提升CoⅢ(Salen)基催化剂的稳定性;选择不同结构的沸石、采用不同的制备方法和金属源发展多种杂原子沸石以进一步提高现有沸石的活性位点数和活性。本文的阐述有望为发展用于节能降耗工业化生产乙二醇的催化剂提供一定的指引。
        Mono ethylene glycol(MEG) is an important bulk chemical,yet the self-sufficiency of which in China is not higher than 40%. The method for producing MEG in industry by non-catalytic direct hydration of ethylene oxide( EO) under high molar ratio of water to EO is of high-energy-consumption. Hence,it is urgent to develop catalytic hydration of EO with low molar ratio of water to EO. Herein,based on the catalysis and deactivation mechanism,the newly developed resin-based catalysts,metallic oxide-based catalysts,CoⅢ(Salen)-based catalysts and Sn-doped zeolites were introduced in detail and depth for the first time. Moreover,constructive suggestions for overcoming the disadvantages of these catalysts were proposed. It was advocated that the activity,thermal stability and anti-swelling property of ion-exchange resins could be improved by choosing new functional groups and additives such as carbon nanotubes with various draw ratios,graphene with various layers and kinds of nano oxides. It was suggested that the porous niobic acid materials with different acidity could provide higher activity. For the stability improvement of CoⅢ(Salen)-based catalysts,the development of new CoⅢ(Salen) active species by changing organic ligands and counter-ions could be a good consideration. As for improving the activity and active site number of now-available zeolites,it was reasonable to synthesize kinds of metal-doped zeolites with different framework topologies by different methods andmetal sources. It was anticipated that this review would play an instructive role to some extent in developing catalysts for producing MEG with low cost and energy consumption in industry.
引文
[1]赵小全.乙二醇合成技术的新进展[J].广东化工,2011,38(7):242-243,246.ZHAO X Q.Latest progress on synthesis of ethylene glycol[J].Guangdong Chemical Industry,2011,38(7):242-243,246.
    [2]赵岚,李维真,谷彦丽.环氧乙烷水合制乙二醇的现状、技术进展及建议[J].化工进展,2009,28(s1):27-30.ZHAO L,LI W Z,GU Y L.The present situation,technology progress and suggestion of producing ethylene glycol via hydration of ethylene oxide[J].Chemical Industry and Engineering Progress,2009,28(s1):27-30.
    [3]李应成,何文军,陈永福.环氧乙烷催化水合制乙二醇研究进展[J].工业催化,2002,10(2):38-45.LI Y C,HE W J,CHEN Y F.Advances in the researches in preparation of ethylene glycol via ethylene oxide catalytic hydration[J].Industrial Catalysis,2002,10(2):38-45.
    [4]杨志剑,任楠,唐颐.环氧乙烷催化水合制备乙二醇的研究进展[J].石油化工,2010,39(5):562-569.YANG Z J,REN N,TANG Y.Advances in preparation of ethylene glycol via catalytic hydration of ethylene oxide[J].Petrochemical Technology,2010,39(5):562-569.
    [5]贺俊海,黄集钺,石鸣彦,等.乙二醇合成技术研究[J].化工中间体,2009(1):59-62.HE J H,HUANG J Y,SHI M Y,et al.Advances of ethylene glycol synthesizing process[J].Chemical Intermediate,2009(1):59-62.
    [6]http://www.pecinfo.net/newscenter/detail-200000-2017071900339.shtmll.[EB/OL].2017-07-19.
    [7]http://www.chemsino.com/dailynews/newsview.aspx?id=499321&cataid=62[EB/OL].
    [8]OTHMER D F,THAKAR M S.Glycol production—hydration of ethylene oxide[J].Industrial&Engineering Chemistry,1958,50(9):1235-1244.
    [9]KOZLOVSKY I A,KOZLOVSKY R A,KOUSTOV A V,et al.Kinetics and products distribution of selective catalytic hydration of ethylene-and propylene oxides in concentrated aqueous solutions[J].Organic Process Research&Development,2002,6(5):660-664.
    [10]YANG Z J,REN N,ZHANG Y H,et al.Studies on mechanism for homogeneous catalytic hydration of ethylene oxide:effects of p H window and esterification[J].Catalysis Communications,2010,11(5):447-450.
    [11]VAN HAL J W,LEDFORD J S,ZHANG X.Investigation of three types of catalysts for the hydration of ethylene oxide(EO)to monoethylene glycol(MEG)[J].Catalysis Today,2007,123(1/4):310-315.
    [12]CHRISTEN J D,TAYLOR H B.Preparation of polyether polyols:US4521548[P].1985-06-04.
    [13]ALTIOKKA M R,AKYALCIN S.Kinetics of the hydration of ethylene oxide in the presence of heterogeneous catalyst[J].Industrial&Engineering Chemistry Research,2009,48(24):10840-10844.
    [14]VAN KRUCHTEN E M G A,DERKS W.Catalytic process for producing an alkylene glycol with reactor-output recycle:US6580008[P].2003-06-17.
    [15]SHVETS V F,KOZLOVSKY R A,KOZLOVSKY I A,et al.The model of catalytic reactor of ethylene glycol production[J].Organic Process Research&Development,2005,9(6):768-773.
    [16]VAN KRUCHTEN E M G A.Process for the preparation of alkylene glycols:US5874653[P].1999-02-23.
    [17]VAN KRUCHTEN E M G A.Catalytic hydrolysis of alkylene oxides:WO9923053[P].1999-05-14.
    [18]李应成,何文军,费泰康,等.用于环氧乙烷水合制备乙二醇的催化剂:100413579C[P].2008-08-27.YING Y C,HE W J,FEI T K,et al.Catalyst used for hydrating epoxy ethane to prepare ethandiol:100413579C[P].2008-08-27.
    [19]李应成,何文军,费泰康,等.环氧乙烷水合制乙二醇催化剂的制备方法:100413580C[P].2008-08-27.YING Y C,HE W J,FEI T K,et al.Method for preparing catalyst for hydration of epoxy ethane to prepare ethandiol:100413580C[P].2008-08-27.
    [20]李应成,何文军,费泰康,等.环氧乙烷水合制备乙二醇的氧化铌催化剂:100413578C[P].2008-08-27.YING Y C,HE W J,FEI T K,et al.Columbium oxide catalyst for hydrating epoxy ethane to prepare ethandiol:100413578C[P].2008-08-27.
    [21]李应成,何文军,费泰康,等.用于环氧乙烷水合制乙二醇催化剂的制备方法:100335173C[P].2007-09-05.YING Y C,HE W J,FEI T K,et al.Method for preparing catalyst for hydration of epoxy ethane to produce ethandiol:100335173C[P].2007-09-05.
    [22]MAIHOM T,NAMUANGRUK S,NANOK T,et al.Theoretical study on structures and reaction mechanisms of ethylene oxide hydration over H-ZSM-5:ethylene glycol formation[J].The Journal of Physical Chemistry C,2008,112(33):12914-12920.
    [23]庞纪峰,郑明远,姜宇,等.乙二醇生产和精制技术研究进展[J].化工进展,2013,32(9):2006-2014.PANG J F,ZHENG M Y,JIANG Y,et al.Progress in ethylene glycol production and purification[J].Chemical Industry and Engineering Progress,2013,32(9):2006-2014.
    [24]YUE H,ZHAO Y,MA X,et al.Ethylene glycol:properties,synthesis,and applications[J].Chemical Society Reviews,2012,41(11):4218-4244.
    [25]贺俊海.环氧乙烷催化水合法制乙二醇催化剂研究进展[J].中间体,2009(1):34-36,30.HE J H.Research progress on the catalyst for preparation of EG by EO catalytic hydration[J].Intermediate,2009(1):34-36,30.
    [26]唐永良.环氧乙烷催化法合成乙二醇的研究进展[J].合成纤维,2005(11):23-27.TANG Y L.Progress in preparation of ethylene glycol via ethylene oxide catalytic reaction[J].Synthetic Fiber in China,2005(11):23-27.
    [27]Shell Global Home Page.http://www.shell.com/businesscustomers/chemicals/factsheets-speeches-andarticles/factsheets/mono-ethylene-g lycol.html[EB/OL].2016-03-24.
    [28]钱伯章.我国乙二醇的市场分析[J].聚酯工业,2016,29(3):5-7,11.QIAN B Z.Market analysis of ethylene glycol in China[J].Polyester Industry,2016,29(3):5-7,11.
    [29]http://www.qianzhan.com/analyst/detail/220/170727-5de356e4.html.[EB/OL].
    [30]KIM L.Catalytic hydration of ethylene oxide to ethylene glycol:US4165440[P].1979-08-21.
    [31]REMAN W G,VAN KRUCHTEN E M G A.Process for the preparation of alkylene glycols:US5488184[P].1996-06-30.
    [32]STRICKLER G R,LANDON V G,LEE G S J,et al.Process and equipment for the production of ethylene glycols:US6137015[P].2000-10-24.
    [33]SHVETS V F,MAKAROV M G,KUSTOV A V,et al.Method for producing alkylene glycols:WO9912876[P].1999-03-18.
    [34]蔡红,俞峰萍,何文军,等.有机/无机纳米复合树脂的制备方法:102372815B[P].2014-05-28.CAI H,YU F P,HE W J,et al.Preparation method for organic/inorganic nano composite resin:102372815B[P].2014-05-28.
    [35]俞峰萍,蔡红,何文军,等.大孔型强碱性碳纳米管复合离子交换树脂及其制备方法:102372812B[P].2013-03-06.YU F P,CAI H,HE W J,et al.Macroporous strong alkaline carbon nanotube composite ion exchange resin and preparation method thereof:102372812B[P].2013-03-06.
    [36]蔡红,俞峰萍,何文军,等.大孔有机/无机纳米复合树脂的制备方法:102372811B[P].2013-01-09.CAI H,YU F P,HE W J,et al.Preparation method of macroporous organic/inorganic nanometer composite resin:102372811B[P].2013-01-09.
    [37]俞峰萍,蔡红,何文军,等.强碱性碳纳米管复合树脂及其制备方法:102372830B[P].2012-11-28.YU F P,CAI H,HE W J,et al.Strongly basic carbon nanotube composite resin and its preparation method:102372830B[P].2012-11-28.
    [38]YU F P,CAI H,HE W J,et al.Synthesis and characterization of a polymer/multiwalled carbon nanotube composite and its application in the hydration of ethylene oxide[J].Journal of Applied Polymer Science,2010,115(5):2946-2954.
    [39]LI Y N,YU F P,HE W J,et al.Carbon nanomaterial-based copolymer of styrene–divinylbenzene resins:Efficient interaction through graphene/CNTs polymer network[J].Journal of Applied Polymer Science,2014,131(11).DOI:10.1002/APP.41234.
    [40]LI Y N,YU F P,HE W J,et al.The preparation and catalytic performance of graphene-reinforced ion-exchange resins[J].RSC Advances,2015,5(4):2550-2561.
    [41]李亚男,何文军,杨为民.复合离子交换树脂催化环氧乙烷水合制乙二醇的性能研究[J].化学反应工程与工艺,2015,31(1):8-14.LI Y N,HE W J,YANG W M.Catalytic performance of composite resins for the hydration of ethylene oxide to ethylene glycol[J].Chemical Reaction Engineering and Technology,2015,31(1):8-14.
    [42]李亚男,何文军,杨为民.高效复合型树脂催化剂应用于环氧乙烷催化水合生产乙二醇[J].石油化工,2015,43(s1):87-90.LI Y N,HE W J,YANG W M.Highly efficient composite resins for the catalytic hydration of ethylene oxide to ethylene glycol[J].Petrochemical Technology,2015,43(s1):87-90.
    [43]WANG F,CHEN J,ZHANG B,et al.Hydration of ethylene oxide over modified silica gel[J].Chinese Journal of Catalysis,2005,26(5):355-356.
    [44]王璠,陈金龙,陈群,等.耐高温阴离子交换树脂的合成及在环氧乙烷催化水合反应中的应用[J].分子催化,2006,20(2):97-101.WANG F,CHEN J L,CHEN Q,et al.Synthesis of thermal stable anion exchange resin and its using in EO catalytic hydration[J].Journal of Molecular Catalysis(China),2006,20(2):97-101.
    [45]王品,何明阳,张益峰,等.有机硅骨架阴离子交换树脂的合成及应用[J].高校化学工程学报,2007,21(6):1002-1007.WANG P,HE M Y,ZHANG Y F,et al.Synthesis and application of anion exchange resin with organic silicone-containing dendrimers[J].Journal of Chemical Engineering of Chinese Universities,2007,21(6):1002-1007.
    [46]李党军,何明阳,陈群,等.浓环氧乙烷水溶液的选择性催化制乙二醇工艺研究[J].离子交换与吸附,2009,25(4):361-369.LI D J,HE M Y,CHEN Q,et al.Study on the technology of selective catalytic hydration of ethylene oxide in concentrated aqueous solutions[J].Ion Exchange and Adsorption,2009,25(4):361-369.
    [47]陈群,刘迎春,孙奇,等.耐高温强碱性阴离子交换树脂催化剂的合成及应用[J].分子催化,2009,23(3):243-247.CHEN Q,LIU Y C,SUN Q,et al.Synthesis and application of thermal stable strong base anion exchange resin catalyst[J].Journal of Molecular Catalysis(China),2009,23(3):243-247.
    [48]孙富安,孙奇,何明阳,等.苯环硝基取代的苯乙烯型强碱阴离子交换树脂的合成及应用[J].离子交换与吸附,2010,26(5):457-463.SUN F A,SUN Q,HE M Y,et al.Preparation and application of strongly basic anion exchange resin based on polystyrene of ring-substituted by nitro[J].Ion Exchange and Adsorption,2010,26(5):457-463.
    [49]LIU F,WANG L,SUN Q,et al.Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers:heterogeneous catalysts that are faster than homogeneous catalysts[J].Journal of the American Chemical Society,2012,134(41):16948-16950.
    [50]RISTI?M,POPOVI?S,MUSI?S.Sol–gel synthesis and characterization of Nb2O5 powders[J].Materials Letters,2004,58(21):2658-2663.
    [51]UEKAWA N,KUDO T,MORI F,et al.Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol[J].Journal of Colloid and Interface Science,2003,264(2):378-384.
    [52]DIAS A S,LIMA S,CARRIAZO D,et al.Exfoliated titanate,niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of d-xylose into furfural[J].Journal of Catalysis,2006,244(2):230-237.
    [53]LI Y C,YAN S,QIAN L,et al.Effect of tin on Nb2O5/alpha-Al2O3catalyst for ethylene oxide hydration[J].Journal of Catalysis,2006,241(1):173-179.
    [54]LI Y C,YUE B,YAN S,et al.Preparation of ethylene glycol via catalytic hydration with highly efficient supported niobia catalyst[J].Catalysis Letters,2004,95(3):163-166.
    [55]LI Y C,YAN S,YUE B,et al.Selective catalytic hydration of ethylene oxide over niobium oxide supported onα-alumina[J].Applied Catalysis A:General,2004,272(1/2):305-310.
    [56]LI Y C,YAN S,YANG W M,et al.Effects of support modification on Nb2O5/α-Al2O3 catalyst for ethylene oxide hydration[J].Journal of Molecular Catalysis A:Chemical,2005,226(2):285-290.
    [57]YANG Z J,LI Y,WU Q,et al.Layered niobic acid with self-exfoliatable nanosheets and adjustable acidity for catalytic hydration of ethylene oxide[J].Journal of Catalysis,2011,280(2):247-254.
    [58]KOZLOVSKII R A,YUSHCHENKO V V,KITAEV L E,et al.Structural organization of phosphorus titanate oxides prepared by the alkoxo method and their catalytic activity in ethylene glycol oxyethylation[J].Russian Chemical Bulletin,2002,51(6):967-974.
    [59]ZAVELEV D E,TSODIKOV M V,ZHIDOMIROV G M,et al.Role of the surface hydroxyl groups of modified titanium oxide in catalytic ethylene oxide hydration[J].Kinetics and Catalysis,2011,52(5):659-671.
    [60]LI B,BAI S,WANG X,et al.Hydration of epoxides on CoⅢ(salen)encapsulated in silica-based nanoreactors[J].Angewandte Chemie International Edition,2012,51(46):11517-11521.
    [61]ZHONG M,ZHAO Y,YANG Q,et al.Epoxides hydration on CoⅢ(salen)-OTs encapsulated in silica nanocages modified with prehydrolyzed TMOS[J].Journal of Catalysis,2016,338:184-191.
    [62]NIELSEN L P C,STEVENSON C P,BLACKMOND D G,et al.Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides[J].Journal of the American Chemical Society,2004,126(5):1360-1362.
    [63]SCHAUS S E,BRANDES B D,LARROW J F,et al.Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral(salen)CoⅢcomplexes.Practical synthesis of enantioenriched terminal epoxides and 1,2-diols[J].Journal of the American Chemical Society,2002,124(7):1307-1315.
    [64]JAIN S,VENKATASUBBAIAH K,JONES C W,et al.Factors influencing recyclability of Co(Ⅲ)-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin[J].Journal of Molecular Catalysis A:Chemical,2010,316(1/2):8-15.
    [65]JAIN S,ZHENG X,JONES C W,et al.Importance of counterion reactivity on the deactivation of Co-salen catalysts in the hydrolytic kinetic resolution of epichlorohydrin[J].Inorganic Chemistry,2007,46(21):8887-8896.
    [66]COZZI P G.Metal-Salen Schiff base complexes in catalysis:practical aspects[J].Chemical Society Reviews,2004,33(7):410-421.
    [67]DAI Z,SUN Q,CHEN F,et al.Enhancement of catalytic activity in epoxide hydration by increasing the concentration of cobalt(III)/salen in porous polymer catalysts[J].Chem Cat Chem,2016,8(4):812-817.
    [68]ROMáN-LESHKOV Y,MOLINER M,LABINGER J A,et al.Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J].Angewandte Chemie International Edition,2010,49(47):8954-8957.
    [69]MOLINER M,ROMAN-LESHKOV Y,DAVIS M E.Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(14):6164-6168.
    [70]HOLM M S,SARAVANAMURUGAN S,TAARNING E.Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J].Science,2010,328(5978):602-605.
    [71]GUNTHER W R,WANG Y,JI Y,et al.Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift[J].Nature Communications,2012,3(4):1109(1-8).
    [72]DUSSELIER M,VAN WOUWE P,DEWAELE A,et al.Lactic acid as a platform chemical in the biobased economy:the role of chemocatalysis[J].Energy&Environmental Science,2013,6(5):1415-1442.
    [73]TAARNING E,SARAVANAMURUGAN S,SPANGSBERG HOLM M,et al.Zeolite-catalyzed isomerization of triose sugars[J].Chem Sus Chem,2009,2(7):625-627.
    [74]TANG B,DAI W,WU G,et al.Improved postsynthesis strategy to Sn-beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides[J].ACS Catalysis,2014,4(8):2801-2810.
    [75]DAI W,WANG C,TANG B,et al.Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides[J].ACS Catalysis,2016,6(5):2955-2964.
    [76]何文军,费泰康,王嘉华,等.环氧乙烷直接催化水合制乙二醇技术经济性探讨[J].化工进展,2016,35(7):2268-2273.HE W J,FEI T K,WANG J H,et al.Economic investigation of direct catalytic hydration of ethylene oxide to ethylene glycol[J].Chemical Industry and Engineering Progress,2016,35(7):2268-2273.
    [77]REN W,WANG Y,ZHANG R,et al.Mechanistic aspects of metal valence change in salen Co(Ⅲ)OAc-catalyzed hydrolytic kinetic resolution of racemic epoxides[J].The Journal of Organic Chemistry,2013,78(10):4801-4810.
    [78]周智明,李连友,徐巧,等.仿生催化剂——Salen金属络合物催化不对称环氧化烯烃的基础[J].有机化学,2005,25(4):347-354.ZHOU Z M,LI L Y,XU Q,et al.Biomimetic catalyst:salen-metal complex catalyzed asymmetric epoxidation of the olefins[J].Chinese Journal of Organic Chemistry,2005,25(4):347-354.
    [79]FIRST E L,GOUNARIS C E,WEI J,et al.Computational characterization of zeolite porous networks:an automated approach[J].Physical Chemistry Chemical Physics,2011,13(38):17339-17358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700