用户名: 密码: 验证码:
超广谱β-内酰胺酶肺炎克雷伯菌噬菌体F20的分离鉴定及其对小鼠败血症治疗效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization and application of a novel phage F20 in the rescue septicemia mice caused by extended spectrum beta-lactamases-producing Klebsiella pneumoniae
  • 作者:陈松建 ; 王书伟 ; 张改 ; 李振江 ; 李亚辉 ; 王山梅 ; 王中全 ; 靳静
  • 英文作者:CHEN Song-Jian;WANG Shu-Wei;ZHANG Gai;LI Zhen-Jiang;LI Ya-Hui;WANG Shan-Mei;WANG Zhong-Quan;JIN Jing;Department of Pathogen Biology and Immunology, Henan Medical College;Clinical Laboratory, Henan Province People's Hospital;Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University;
  • 关键词:肺炎克雷伯菌 ; 败血症 ; 噬菌体F20 ; 感染
  • 英文关键词:Klebsiella pneumoniae;;Septicemia;;Phage F20;;Infection
  • 中文刊名:WSWT
  • 英文刊名:Microbiology China
  • 机构:河南医学高等专科学校病原生物学与免疫学教研室;河南省人民医院检验科;郑州大学基础医学院病原生物学教研室;
  • 出版日期:2018-09-17 13:24
  • 出版单位:微生物学通报
  • 年:2019
  • 期:v.46
  • 基金:河南省科技厅科学发展计划项目(162102310341)~~
  • 语种:中文;
  • 页:WSWT201906029
  • 页数:8
  • CN:06
  • ISSN:11-1996/Q
  • 分类号:244-251
摘要
【背景】肺炎克雷伯菌是引起临床感染的重要条件致病菌之一,肺炎克雷伯菌中产超广谱β-内酰胺酶(Extended-spectrum beta-lactamases,ESBLs)的耐药菌株增多迫切需要找到一种新的治疗方法。【目的】自污水中分离超广谱β-内酰胺酶肺炎克雷伯菌噬菌体,并明确其生物学特性、观察其治疗小鼠产ESBLs肺炎克雷伯菌感染的疗效。【方法】电镜观察F20形态,调查其噬菌谱、生长曲线等生物学特性。建立小鼠败血症感染模型观察F20治疗小鼠肺炎克雷伯菌感染的疗效。【结果】F20在其宿主菌的菌苔上形成裂解性噬菌体所具有的完全透明的噬菌斑,电镜观察F20具典型的有尾噬菌体目长尾病毒科病毒的形态特征。一步生长曲线显示F20的潜伏期为18 min,裂解量为89 PFU/细胞。稳定性试验显示F20在pH 5.0-9.0及50°C环境均具良好稳定性。使用噬菌体F20对败血症小鼠治疗后,治疗组小鼠各外周血和各脏器(肺脏、肝脏、脾脏和肾脏)中的细菌数也显著小于对照组细菌数(P<0.001),与对照组相比下降大约1–3数量级。F20治疗败血症小鼠存活率达到87.5%,无毒副作用,而对照组小鼠在1 d内全部死亡,可显著提高小鼠的存活率(P<0.001)。【结论】新分离的裂解性噬菌体F20在小鼠体内能安全有效地治疗超广谱β-内酰胺酶肺炎克雷伯菌引起的败血症,可作为生物抗菌剂的有效成分。
        [Background] Klebsiella pneumoniae is a ubiquitous opportunistic bacterium. The high prevalence of extended-spectrum beta-lactamases(ESBLs) in Klebsiella pneumoniae has propelled the need to explore alternative antibacterial therapies. [Objective] The present study focused on the isolation and characterization of a novel virulent Klebsiella pneumoniae extended-spectrum beta-lactamases-producing phage isolated from sewage therapy. Moreover, we used the mouse model of septicemia to examine the efficacy of phage therapy in treating infections caused by K. pneumoniae produced ESBLs. [Methods] The morphology of the Klebsiella phage F20 was observed with electron microscopy. One-step growth kinetics, host range, and pharmacokinetics of the phage were determined. In additional, F20 was used to rescue mice from bacteremia caused by extended-spectrum beta-lactamases-producing Klebsiella pneumoniae KP-20 in vivo experiments. [Results] F20 exhibited lytic activity evident in clear areas on the bacterial lawns. Morphologically, F20 was classified as a member of the Siphoviridae family and the Caudovirales order. The phage is highly infectious with a short latent period(18 min) and a large burst size(89 PFU/cell). The phage is stable over a wide pH range(5.0 to 9.0) and at high temperatures(50 °C). Administration of F20 after KP-20 challenge significantly decreased the bacterial burden in the blood and organs(lung, liver, spleen and kidney) of mice, and bacterial titers significantly decreased by 1-3 orders of magnitude in mice treated with phage therapy(P<0.001). Administration of F20 can rescue 87.5% of the mice and have no adverse effect, but the control group resulted in a 0 survival rate within 1 day. Phage treatment can significantly improve the survival of mice(P<0.001). [Conclusion] Our study provides the experimental evidence that F20 shows significant treatment efficacy against Klebsiella pneumoniae infection in mice without any adverse effects. The characteristic of the phage F20 greatly increase its utility as biological bactericide.
引文
[1] Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens:epidemiology, taxonomy, typing methods, and pathogenicity factors[J]. Clinical Microbiology Reviews, 1998,11(4):589-603
    [2] Lu TK, Koeris MS. The next generation of bacteriophage therapy[J]. Current Opinion in Microbiology, 2011, 14(5):524-531
    [3] Hanlon GW. Bacteriophages:an appraisal of their role in the treatment of bacterial infections[J]. International Journal of Antimicrobial Agents, 2007, 30(2):118-128
    [4] Hu B, Wang J, Yan Q, et al. Application of phages in the treatment of bacteremia caused by Imipenem-resistant Pseudomonas aeruginosa[J]. Chinese Journal of Microbiology and Immunology, 2006, 26(5):438-441(in Chinese)胡北,王晶,严群,等.噬菌体治疗实验性小鼠耐亚胺培南铜绿假单胞菌感染的研究[J].中华微生物学和免疫学杂志, 2006,26(5):438-441
    [5] Jin J, Li ZJ, Wang SW, et al. Characterization of ZZ2, a lytic bacteriophage that infects clinical isolates of Acinetobacter baumannii[J]. Journal of Pathogen Biology, 2013, 8(10):885-888(in Chinese)靳静,李振江,王书伟,等.鲍曼不动杆菌噬菌体ZZ2生物学特性研究[J].中国病原生物学杂志, 2013, 8(10):885-888
    [6] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning:A Laboratory Manual[M]. 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989
    [7] Jin J, Li ZJ, Li YH, et al. Pharmacokinetics of the Acinetobacter baumannii phage ZZ1 in mice[J]. Journal of Pathogen Biology,2014, 9(2):143-145(in Chinese)靳静,李振江,李亚辉,等.鲍曼不动杆菌噬菌体ZZ1在小鼠体内的药代动力学研究[J].中国病原生物学杂志, 2014, 9(2):143-145
    [8] Pajunen M, Kiljunen S, Skurnik M. BacteriophageφYe O3-12,specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7[J]. Journal of Bacteriology, 2000, 182(18):5114-5120
    [9] Capparelli R, Parlato M, Borriello G, et al. Experimental phage therapy against Staphylococcus aureus in mice[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(8):2765-2773
    [10] Knothe H, Shah P, Krcmery V, et al. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens[J].Infection, 1983, 11(6):315-317
    [11] Zhang YW, Zeng J, Liu WE, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China[J]. Journal of Infection, 2015, 71(5):553-560
    [12] Abedon ST. Phage therapy:various perspectives on how to improve the art[A]//Medina C, López-Baena FJ. Host-Pathogen Interactions:Methods and Protocols[M]. New York:Humana Press, 2018:113-127
    [13] Drulis-Kawa Z, Mackiewicz P, K?sik-Szeloch A, et al. Isolation and characterisation of KP34-a novelφKMV-like bacteriophage for Klebsiella pneumoniae[J]. Applied Microbiology and Biotechnology, 2011, 90(4):1333-1345
    [14] D’Andrea MM, Marmo P, de Angelis LH, et al.φBO1E, a newly discovered lytic bacteriophage targeting carbapenemaseproducing Klebsiella pneumoniae of the pandemic Clonal Group258 clade II lineage[J]. Scientific Reports, 2017, 7(1):2614
    [15] Yu L, Wang S, Guo ZM, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli[J]. Applied Microbiology and Biotechnology, 2018, 102(2):971-983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700