基于亚波长光栅结构的微流控可调窄带滤波器设计与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable Narrow-Band Filter with Sub-Wavelength Grating Structure by Micro-Optofluidic Technique
  • 作者:毛强 ; 唐雄贵 ; 孟方 ; 陈明 ; 梁珊
  • 英文作者:Mao Qiang;Tang Xionggui;Meng Fang;Chen Ming;Liang Shan;College of Physics and Electronic Science,Hunan Normal University;
  • 关键词:光学器件 ; 微流控光子学 ; 可调滤波器 ; 严格模式理论 ; 亚波长光栅
  • 英文关键词:optical devices;;micro-optofluidics;;tunable filter;;rigorous mode theory;;sub-wavelength grating
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:湖南师范大学物理与电子科学学院;
  • 出版日期:2018-09-14 09:42
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.639
  • 基金:湖南省自然科学基金(2016JJ2087);; 湖南师范大学青年科学基金
  • 语种:中文;
  • 页:JGDJ201904025
  • 页数:6
  • CN:04
  • ISSN:31-1690/TN
  • 分类号:214-219
摘要
可调窄带滤波器是光学系统中的核心器件之一,在光信号处理、光学传感等领域中有广泛的应用价值。基于亚波长光栅结构,利用微流控技术,提出了一种新型可调控窄带滤波器的实现方法,通过调控微流体通道中流体的折射率,获得了大范围可调窄带滤波功能。采用严格模式理论对其光学性能进行了分析与模拟,数值结果表明,该器件波长调谐范围可达28nm,其滤波带宽不大于0.03nm,灵敏度S大于350nm·RIU~(-1),品质因数Q高达50000,光学性能优异。另外,该新型器件具有结构简单、易于制作、调控简便等诸多优点,在生物传感、化学分析等领域具有广阔的应用前景。
        The tunable optical narrow-band filter is one of the key components in an optical system,which has a wide application in many fields such as optical signal processing and optical sensing.A novel scheme for a widely tunable narrow-band filter is proposed using the micro-optofluidic technology and based on a sub-wavelength grating structure,in which a wide-range adjustable narrow-band filtering function is achieved by adjusting the refractive index of mixed liquid in the micro-fluidic channel.The optical performance is numerically investigated using the rigorous mode theory and the simulation results show that the tunable wavelength range of the designed device is over 28 nm,the filtering bandwidth is less than 0.03 nm,the sensitivity Sis over 350 nm·RIU~(-1),and the quality factor Qis over 50000,indicating that the performance is superior.Moreover,the proposed novel device has many advantages such as simple structure,ease for fabrication and large fabrication tolerance,which is very useful in the fields of bio-sensing,chemical analysis and others.
引文
[1]Takao H,Ishida M.Microfluidic integrated circuits for signal processing using analogous relationship between pneumatic microvalve and MOSFET[J].Journal of Microelectromechanical Systems,2003,12(4):497-505.
    [2]White I M,Yazdi S H,Yu W W.Optofluidic SERS:synergizing photonics and microfluidics for chemical and biological analysis[J].Microfluidics and Nanofluidics,2012,13(2):205-216.
    [3]Sun T,van Berkel C,Green N G,et al.Digital signal processing methods for impedance microfluidic cytometry[J].Microfluidics and Nanofluidics,2009,6(2):179-187.
    [4]Pang L,Chen H M,Freeman L M,et al.Optofluidic devices and applications in photonics,sensing and imaging[J].Lab on a Chip,2012,12(19):3543-3551.
    [5]Guan K M,Liu J Q,Xu Y,et al.Efficient pulsed laser ablation in liquid based on microfluidic technology[J].Chinese Journal of Lasers,2017,44(4):0402006.关凯珉,刘晋桥,徐颖,等.基于微流控技术的高效液相脉冲激光烧蚀法[J].中国激光,2017,44(4):0402006.
    [6]Wu W T,Liang Z C,Zhang L.Optofluidic varifocal microlens[J].Chinese Journal of Luminescence,2015,36(6):718-723.吴雯婷,梁忠诚,仉乐.可控微流控光学变焦透镜[J].发光学报,2015,36(6):718-723
    [7]Mao X L,Waldeisen J R,Juluri B K,et al.Hydrodynamically tunable optofluidic cylindrical microlens[J].Lab on a Chip,2007,7(10):1303-1308.
    [8]Shi J J,Stratton Z,Lin S C S,et al.Tunable optofluidic microlens through active pressure control of an air-liquid interface[J].Microfluidics and Nanofluidics,2010,9(2/3):313-318.
    [9]Seow Y C,Liu A Q,Chin L K,et al.Different curvatures of tunable liquid microlens via the control of laminar flow rate[J].Applied Physics Letters,2008,93(8):084101.
    [10]Helbo B,Kristensen A,Menon A.Amicro-cavity fluidic dye laser[J].Journal of Micromechanics and Microengineering,2003,13(2):307-311.
    [11]Gersborg-Hansen M,Balslev S,Mortensen N A,et al.A coupled cavity micro-fluidic dye ring laser[J].Microelectronic Engineering,2005,78-79:185-189.
    [12]Tang X G,Liang S,Li R J.Design for controllable optofluidic beam splitter[J].Photonics and Nanostructures-Fundamentals and Applications,2016,18:23-30.
    [13]Tang X G,Li R J,Liao J K,et al.A scheme for variable optofluidic attenuator:Design and simulation[J].Optics Communications,2013,305:175-179.
    [14]Levy U,Campbell K,Groisman A,et al.On-chip microfluidic tuning of an optical microring resonator[J].Applied Physics Letters,2006,88(11):111107.
    [15]Fang C L,Dai B,Xu Q,et al.Optofluidic tunable linear narrow-band filter based on Bragg nanocavity[J].IEEE Photonics Journal,2017,9(2):1-8.
    [16]Yu Z,Liang R S,Chen P X,et al.Integrated tunable optofluidics optical filter based on MIM sidecoupled-cavity waveguide[J].Plasmonics,2012,7(4):603-607.
    [17]Li Z G,Yang Y,Zhang X M,et al.Tunable visual color filter using microfluidic grating[J].Biomicrofluidics,2010,4(4):043013.
    [18]Xiao G H,Zhu Q Z,Shen Y,et al.A tunable submicro-optofluidic polymer filter based on guidedmode resonance[J].Nanoscale,2015,7(8):3429-3434.
    [19]Tang X G,Fu K X,Wang Z H,et al.Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials[J].Acta Optica Sinica,2002,22(7):774-779.唐雄贵,傅克祥,王植恒,等.任意各向异性介质光栅的严格模式理论分析[J].光学学报,2002,22(7):774-779.
    [20]Li L F.Use of Fourier series in the analysis of discontinuous periodic structures[J].Journal of the Optical Society of America A,1996,13(9):1870-1876.
    [21]Fu K X,Wang Z H,Zhang D Y,et al.A modal theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile[J].Science in China Series A:Mathematics,1989,42(6):636-645.
    [22]Fu K X,Wang Z H,Zhang Q,et al.Theresonance peak theory of reflection guided-mode resonance filters[J].Chinese Journal of Lasers B,1999,8(4):313-321.
    [23]Tang X G,Du C L.Analysis of nonpolarizing narrowband filters based on resonant anomaly[J].Acta Optica Sinica,2004,24(5):668-672.唐雄贵,杜春雷.基于共振异常的消偏振型窄带滤波器分析[J].光学学报,2004,24(5):668-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700