2017年5月7日广州极端强降水对流系统结构、触发和维持机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure,Triggering and Maintenance Mechanism of Convective Systems During the Guangzhou Extreme Rainfall on 7 May 2017
  • 作者:田付友 ; 郑永光 ; 张小玲 ; 张涛 ; 林隐静 ; 张小雯 ; 朱文剑
  • 英文作者:TIAN Fuyou;ZHENG Yongguang;ZHANG Xiaoling;ZHANG Tao;LIN Yinjing;ZHANG Xiaowen;ZHU Wenjian;National Meteorological Centre;Institute of Atmospheric Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:极端强降水 ; 结构、触发和维持机制 ; 低质心暖云降水 ; 地形影响
  • 英文关键词:extremely severe rainfall;;structure;;triggering and maintenance mechanism;;low-echo-centroid warm cloud precipitation;;terrain effect
  • 中文刊名:QXXX
  • 英文刊名:Meteorological Monthly
  • 机构:国家气象中心;中国科学院大气物理研究所;中国科学院大学;
  • 出版日期:2018-04-21
  • 出版单位:气象
  • 年:2018
  • 期:v.44;No.520
  • 基金:国家自然科学基金项目(41375051);; 国家重点基础研究发展计划(973计划)(2013CB430106);; 国家重点研发计划(2017YFC1502003)共同资助
  • 语种:中文;
  • 页:QXXX201804001
  • 页数:16
  • CN:04
  • ISSN:11-2282/P
  • 分类号:3-18
摘要
2017年5月7日,广州市增城区新塘镇等地出现了小时雨量超过180mm、3h雨量超过330mm的极端强降水事件(简称"5·7"极端强降水事件),导致了严重的经济损失。这次过程的高强度降水分为两个主要阶段:花都区降水和增城区降水,每个阶段的强降水均集中在2~3h内,最大分钟级降水达到了5mm的强度,增城区新塘镇184.4mm的极端小时雨量中约120mm的雨量是在05:30—06:00的半小时内产生的。地闪监测显示,对流发展的第一阶段伴有较少的负地闪,第二阶段仅伴有几个闪电。雷达和卫星资料显示,强降水对流系统具有空间尺度小,发展迅速的特征;但发展成熟阶段的反射率因子大值区和卫星低TBB区在空间上出现明显偏离。强倾斜上升气流可能是造成反射率因子大值区和卫星低TBB区空间偏离的原因。雷达资料垂直剖面显示,对流具有回波顶高较低、云底高度低、强回波质心低等低质心暖云降水的特征。地势分布和辐射降温是花都北部低温中心的主要成因,大尺度弱冷空气和冷中心伴随的地形的共同作用,使得偏南暖湿气流向北移动受阻后,在花都地形的强迫抬升下触发了对流。偏南暖湿气流的持续输送、花都地形的阻挡和冷池的作用是01—03时对流维持的主要原因,弱冷空气的南下对03—04时对流系统的快速南移起到了重要作用,而冷池驱动的对流发展模型可以解释增城地区05—06时对流的较长时间维持。弱的环境引导气流和偏南暖湿气流使得高效的低质心、高效率强降水对流系统较长时间影响同一局地区域,从而导致了花都和增城两地局地极端强降水的出现。
        A very extreme rainfall event occurred on 7 May 2017 in Xintang Town,Zengcheng District of Guangzhou with maximum hourly precipitation exceeding 180 mm and 3 hrainfall exceeding 330 mm(shortly"the 5·7 extreme rainfall event"),causing severe economic damages.The rainfall process can be divided into two stages:Huadu rainfall stage and Zengcheng rainfall stage.The severe rainfall was mainly concentrated in two or three hours.The maximum minutely rainfall was high up to 5.0 mm.About120 mm of the rain poured between 05:30 and 06:00 BT for the extreme hourly precipitation of 184.4 mm in Xintang Town of Zengcheng.Some negative lightning was observed during the Huadu rainfall stage and only several lightning occurred during the Zengcheng convection stage.Both radar reflectivity and satellite images show that the severe convective rainfall system was characterized by small-scale and rapid developing.The radar vertical profiles show the convection featured low-echo-centroid warm-cloud precipitation.There was remarkable spatial inconsistency between radar maximum reflectivity and minimum TBB of satellite image during the mature stages of the convection.The strong updraft was the cause of the spatial inconsistency between radar maximum reflectivity and minimum TBB.The topographic radiation cooling formed the surface cold center near Huadu.The terrain combined with large-scale weak cold air blocked the north-moving warm,moist flow,and the convection was finally triggered near Huadu.The continuously transport of warm,moist air and blocking of Huadu terrain maintained the mesoscale convective system(MCS)during 01:00-03:00 BT in Huadu.The south-moving large-scale weak cold air enhanced the cold pool,and pushed the MCS to move southward rapidly in 03:00-04:00 BT.The combination of south-moving MCS and local convection enhanced the convection over Zengcheng Region.The cold pool driven theory can explain the long-time maintenance and development of the MCS over Zengcheng.Both weak ambient flow and southward surface flow made the MCS slowly move during the two heavy rainfall stages.Thus,the extremely severe rainfall over Huadu and Zengcheng of Guangzhou took place.
引文
谌芸,孙军,徐珺,等,2012.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象,38(10):1255-1266.
    丁一汇,张建云,2009.暴雨洪涝[M].北京:气象出版社:290.
    方翀,毛冬艳,张小雯,等,2012.2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析[J].气象,38(10):1278-1287.
    符娇兰,马学款,陈涛,等,2017.“16·7”华北极端强降水特征及天气学成因分析[J].气象,43(5):528-539.
    傅佩玲,胡东明,张羽,等,2018.2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析[J].气象,44(4):500-510.
    高安宁,李生艳,陈见,等,2009.弱环境风场条件下华南西部大范围暴雨特征分析[J].热带气象学报,25(S1):9-17.
    黄士松,1986.华南前汛期暴雨[M].广州:广东科技出版社:244.
    雷蕾,孙继松,2017.“7·20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报,75(2):685-699,DOI:10.11676/2017.054.
    李真光,梁必骐,包澄澜,1981.华南前汛期暴雨的成因与预报问题[C]∥华南前汛期暴雨文集.北京:气象出版社.
    水利部长江水利委员会水文局,水利部南京水文水资源研究所,1995.水利水电工程设计洪水计算手册[M].北京:中国水利水电出版社:515.
    水利部水文局,南京水利科学研究院,2006.中国暴雨统计参数图集[M].北京:中国水利水电出版社:124.
    孙继松,雷蕾,于波,等,2015.近10年北京地区极端暴雨事件的基本特征[J].气象学报,73(4):609-623.
    孙军,谌芸,杨舒楠,等,2012.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象,38(10):1267-1277.
    陶诗言,1980.中国之暴雨[M].北京:科学出版社:225.
    陶诗言,丁一汇,周晓平,1979.暴雨和强对流天气的研究[J].大气科学,3(3):227-238.
    田付友,郑永光,张涛,等,2017.我国中东部不同级别短时强降水天气的环境物理量分布特征[J].暴雨灾害,36(6):518-526.
    伍志方,蔡景就,林良勋,等,2018.广州2017.“5.7”暖区特大暴雨的中尺度系统和可预报性[J].气象,44(4):485-499.
    俞小鼎,周小刚,王秀明,2012.雷暴与强对流临近天气预报技术进展[J].气象学报,70(3):311-337.
    曾侠,钱光明,潘蔚娟,2004.珠江三角洲都市群城市热岛效应初步研究[J].气象,30(10):12-16.
    张庆红,陈受钧,刘启汉,2000.台湾海峡中尺度对流系统的数值研究[M]∥周秀骥.海峡两岸及邻近地区暴雨试验研究.北京:气象出版社.
    赵玉春,王叶红,2009.近30年华南前汛期暴雨研究概述[J].暴雨灾害,28(3):193-202,228.
    郑永光,陶祖钰,俞小鼎,2017.强对流天气预报的一些基本问题[J].气象,43(6):641-652.
    Corfidi S F,2003.Cold pools and MCS propagation:forecasting the motion of downwind-developing MCSs[J].Wea Forecasting,18(6):997-1017.
    Corfidi S F,Meritt J H,Fritsch J M,1996.Predicting the movement of mesoscale convective complexes[J].Wea Forecasting,11(1):41-46.
    Davis R S,2001.Flash flood forecast and detection methods[M]∥Doswell C A.Severe Convective Storms.Boston,MA:American Meteorological Society:481-525.
    Doswell III C A,Brooks H E,Maddox R A,1996.Flash flood forecasting:An ingredients-based methodology[J].Wea Forecasting,11(4):560-581.
    Droegemeier K K,Wilhelmson R B,1985.Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows.Part I:control simulation and low-level moisture variations[J].J Atmos Sci,42(22):2381-2403.
    Feng Z,Hagos S,Rowe A K,et al,2015.Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign[J].J Adv Model Earth Syst,7(2):357-381.
    Frye J D,Mote T L,2010.Convection initiation along soil moisture boundaries in the southern Great Plains[J].Mon Wea Rev,138(4):1140-1151.
    Laing A G,Carbone R,Levizzani V,et al,2008.The propagation and diurnal cycles of deep convection in northern tropical Africa[J].Quart J Roy Meteor Soc,134(630):93-109.
    Lima M A,Wilson J W,2008.Convective storm initiation in a moist tropical environment[J].Mon Wea Rev,136(6):1847-1864.
    Lin Chuanyao,Chen W C,Chang Paoliang,et al,2011.Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan[J].J Appl Meteor Climatol,50(2):339-353.
    Maddox R A,Caracena F,Hoxit L R,et al,1977.Meteorological aspects of the big Thompson flash flood of 31July 1976[R].NO-AA Tecnical Report#ERL 388-APCL 41.Washlngton,DC:U.S.Government Printing Office,83.
    McAnelly R L,Cotton W R,1986.Meso-beta-scale characteristics of an episode of meso-alpha-scale convective complexes[J].Mon Wea Rev,114:1740-1770.
    Parker M D,2008.Response of simulated squall lines to low-level cooling[J].J Atmos Sci,65(4):1323-1341.
    Roberts R D,Rutledge S,2003.Nowcasting storm initiation and growth using GOES-8and WSR-88Ddata[J].Wea Forecasting,18(4):562-584.
    Tian Fuyou,Zheng Yongguang,Zhang Tao,et al,2015.Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China[J].J Meteor Res,29(3):370-384.
    Tompkins A M,2001.Organization of tropical convection in low vertical wind shears:the role of cold pools[J].J Atmos Sci,58(13):1650-1672.
    Vitale J D,Ryan T,2013.Operational recognition of high precipitation efficiency and low-echo-centroid convection[J].J Operational Meteor,1(12):128-143.
    Williams E R,1989.The tripole structure of thunderstorms[J].JGeophys Res Atmos,94(D11):13151-13167.
    Williams E R,2001.The electrification of severe storms[M]∥Doswell C A.Severe convective Storms.Boston,MA:American Meteorological Society:527-561.
    Zhang Dalin,Shou Yixuan,Dickerson R R,et al,2011.Impact of upstream urbanization on the urban heat island effects along the Washington-Baltimore Corridor[J].J Appl Meteor Climatol,50(10):2012-2029.
    Zheng Yongguang,Xue Ming,Li Bo,et al,2016.Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J].Adv Atmos Sci,33(11):1218-1232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700