空间调制傅里叶变换光谱仪光谱探测中的大气扰动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Atmospheric Disturbance on Spectrum Detection by Spatial Modulation Fourier Transform Spectrometer
  • 作者:吕金光 ; 梁静秋 ; 梁中翥 ; 秦余欣
  • 英文作者:Lü Jinguang;Liang Jingqiu;Liang Zhongzhu;Qin Yuxin;State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:光谱学 ; 大气扰动 ; Monte ; Carlo方法 ; 傅里叶变换光谱仪 ; 相位调制
  • 英文关键词:spectroscopy;;atmospheric disturbance;;Monte Carlo method;;Fourier transform spectrometer;;phase modulation
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室;中国科学院大学;
  • 出版日期:2018-06-27 17:43
  • 出版单位:光学学报
  • 年:2018
  • 期:v.38;No.440
  • 基金:国家自然科学基金(61627819,61575193,61727818,61735018,61805239);; 吉林省科技发展计划(20150520101JH,20170204077GX);; 中国科学院青年创新促进会基金(2018254,2014193)
  • 语种:中文;
  • 页:GXXB201811046
  • 页数:8
  • CN:11
  • ISSN:31-1252/O4
  • 分类号:385-392
摘要
在利用空间调制傅里叶变换光谱仪对远距离目标进行光谱遥测时,大气湍流扰动引起的入射光场的波前畸变会影响干涉图像和复原光谱的质量。根据大气湍流扰动对光场的相位调制作用,建立了大气湍流的随机相位模型与光场在大气中的分步传输模型,并对大气湍流扰动作用下的干涉图像与复原光谱进行了数值计算,结果显示:大气湍流会导致干涉图像的背景产生低频的强度起伏,并致使复原光谱在低频区域出现伴频噪声。采用统计实验的方法对归一化光谱误差与望远系统入瞳放大率、大气相干长度之间的关系进行统计分析。结果表明:归一化光谱误差的统计均值与望远系统入瞳放大率为准线性正相关,与大气相干长度为非线性负相关。依据归一化光谱误差的统计分析结果便可以根据外场环境的大气相干长度,合理地设计望远系统的入瞳放大率,从而实现对目标光谱的有效探测。
        When spatial modulation Fourier transform spectrometer is used to detect the spectrum of remote target, the interferogram and recovered spectrum are influenced by wavefront distortion resulting from atmospheric turbulence disturbance. According to the phase modulation of atmospheric turbulence disturbance on optical field, we build the model of atmospheric turbulence random phase screen and optical field split-step propagation in atmosphere. The interferogram and recovered spectrum affected by atmospheric turbulence disturbance are calculated numerically. The results show that the atmospheric turbulence disturbance causes low-frequency background intensity fluctuation in interferogram, and the concomitant frequency noise appears at the low-frequency region of the recovered spectrum. The relationship between normalized spectrum error and telescope entrance pupil magnification along with atmospheric coherence length is analyzed by statistical experiment method. The results indicate that the statistical mean of normalized spectrum error is linear positive correlated to telescope entrance pupil magnification, and it is nonlinear negative correlated to atmospheric coherence length. According to the statistical result of the normalized spectrum error, in order to realize the effective detection on target spectrum, the telescope entrance pupil magnification can be designed reasonably on the basis of the atmospheric coherence length in outfield environment.
引文
[1] Weng S F. Fourier transform infrared spectrometer[M]. Beijing: Chemical Industry Press, 2005: 34-56. 翁诗甫. 傅里叶变换红外光谱仪[M]. 北京: 化学工业出版社, 2005: 34-56.
    [2] Griffiths P R, de Haseth J A. Fourier transform infrared spectrometry[M]. New York: John Wiley & Sons, 2007: 19-41.
    [3] Manzardo O. Micro-sized Fourier spectrometers[D]. Neuchatel: University of Neuchatel Institute of Microtechnique, 2002: 29-54.
    [4] Manuilskiy A, Andersson H, Tungstrom G, et al. Compact multi channel optical Fourier spectrometer[C]. Proceedings of SPIE, 2006, 6395: 639504.
    [5] Lü J G, Liang J Q, Liang Z Z, et al. Analysis and restraint of alignment error by stepped micro-mirror[J]. Acta Optica Sinica, 2016, 36(3): 0330003. 吕金光, 梁静秋, 梁中翥, 等. 多级微反射镜对准误差的分析与抑制[J]. 光学学报, 2016, 36(3): 0330003.
    [6] Liang J Q, Liang Z Z, Lü J G, et al. Micro spatial modulation Fourier transform infrared spectrometer[J]. Chinese Optics, 2015, 8(2): 277-298. 梁静秋, 梁中翥, 吕金光, 等. 空间调制微型傅里叶变换红外光谱仪研究[J]. 中国光学, 2015, 8(2): 277-298.
    [7] Lü J G, Liang J Q, Liang Z Z, et al. Optical field analysis and diffraction restraint of microminiature Fourier transform spectrometer[J]. Acta Optica Sinica, 2016, 36(11): 1130002. 吕金光, 梁静秋, 梁中翥, 等. 微小型傅里叶变换光谱仪光场分析与衍射抑制[J]. 光学学报, 2016, 36(11): 1130002.
    [8] Feng C, Wang B, Liang Z Z, et al. Miniaturization of step mirrors in a static Fourier transform spectrometer: theory and simulation[J]. Journal of the Optical Society of America B, 2010, 28(1): 128-133.
    [9] Lü J G, Liang J Q, Liang Z Z, et al. Wavefront aberration analysis and spectrum correction of microminiature Fourier transform spectrometer[J]. Acta Optica Sinica, 2018, 38(2): 0230001. 吕金光, 梁静秋, 梁中翥, 等. 微小型傅里叶变换光谱仪波前像差分析与光谱修正[J]. 光学学报, 2018, 38(2): 0230001.
    [10] Song F J, Jutamulia S. Advanced optical information processing[M]. Beijing: Peking University Press, 2014: 236-244. 宋菲君, Jutamulia S. 近代光学信息处理[M]. 北京: 北京大学出版社, 2014: 236-244.
    [11] Schmidt J D. Numerical simulation of optical wave propagation with examples in MATLAB[M]. Washington: SPIE Press, 2010: 160-169.
    [12] Goodman J W. Statistical optics[M]. New York: John Wiley & Sons, 2000: 388-393.
    [13] Poon T C, Kim T. Engineering optics with MATLAB[M]. Singapore: World Scientific Publishing Company, 2006: 121-124.
    [14] Cai D M, Wang K, Jia P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 104217. 蔡冬梅, 王昆, 贾鹏, 等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 104217.
    [15] Liu Y Y, Lü Q B, Zhang W X. Simulation for space target interference imaging system distorted by atmospheric turbulence[J]. Acta Physica Sinica, 2012, 61(12): 124201. 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究[J]. 物理学报, 2012, 61(12): 124201.
    [16] Feng Y T, Sun J, Li Y, et al. Broad-band spatial heterodyne interferometric spectrometer[J]. Optics and Precision Engineering, 2015, 23(1): 48-55. 冯玉涛, 孙剑, 李勇, 等. 宽谱段空间外差干涉光谱仪[J]. 光学 精密工程, 2015, 23(1): 48-55.
    [17] Shen Y, Bai C X, Wang H, et al. Nonlinear spectral recovery based on fast Gaussian gridding[J]. Laser & Optoelectronics Progress, 2016, 53(9): 093003. 沈燕, 柏财勋, 王昊, 等. 基于快速高斯网格法的非线性光谱复原方法[J]. 激光与光电子学进展, 2016, 53(9): 093003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700