介孔磷酸铌一锅法催化葡萄糖制备5-羟甲基糠醛
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-pot Catalytic Preparation of 5-Hydroxymethylfurural from Glucose on Mesoporous Niobium Phosphate
  • 作者:贾进 ; 程璐 ; 张澄 ; 蔡伟杰 ; 周大勇 ; 高欣钦 ; 刘中原 ; 张江华
  • 英文作者:JIA Jin;CHENG Lu;ZHANG Cheng;CAI Wei-jie;ZHOU Da-yong;GAO Xin-qin;LIU Zhong-yuan;ZHANG Jiang-hua;College of Light Industry and Chemical Engineering,Dalian Polytechnic University;National Engineering Research Center of Seafood,Dalian Polytechnic University;State Key Laboratory of Fine Chemicals,Dalian University of Technology;
  • 关键词:5-羟甲基糠醛 ; 葡萄糖 ; 磷酸铌 ; 固体酸 ; 两相 ; 催化与分离提纯技术
  • 英文关键词:5-hydroxymethylfurural;;glucose;;niobium phosphate;;solid acid;;biphasic phase;;catalysis;;separation and purification technology
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:大连工业大学轻工与化学工程学院;大连工业大学国家海洋食品工程技术研究中心;大连理工大学精细化工国家重点实验室;
  • 出版日期:2018-02-15
  • 出版单位:精细化工
  • 年:2018
  • 期:v.35
  • 基金:中国博士后科学基金资助项目(2017M621119);; 辽宁省自然科学基金计划重点项目(20170520220);; 大连理工大学精细化工国家重点实验室开放课题基金项目(KF1416);; 大连工业大学青年基金项目(QNJJ201402);; 2017年大连工业大学大学生创新创业训练计划项目(201710152061)~~
  • 语种:中文;
  • 页:JXHG201802012
  • 页数:7
  • CN:02
  • ISSN:21-1203/TQ
  • 分类号:81-86+116
摘要
水热法制得介孔磷酸铌(m-NbP)固体酸催化剂,并用X-射线衍射(XRD)、氮气吸脱附、扫描电镜(SEM)、透射电镜(TEM)、氨气程序升温脱附(NH_3-TPD)、吡啶吸附红外光谱(Py-FTIR)等手段对m-NbP进行了结构和酸性质表征。将m-NbP用于催化水-DMSO两相体系葡萄糖一锅法合成5-羟甲基糠醛(5-HMF),考察了催化剂用量、水与DMSO体积比、反应温度、反应时间及催化剂循环利用次数对5-HMF收率的影响,并与其他三种催化剂(Amberlyst-15、Nb_2O_5及m-NbP-F127)比较催化性能。结果表明,m-NbP具有介孔结构和大量表面强酸性位,因而催化性能突出;当m(葡萄糖)∶m(m-NbP)=2∶1、V(水)∶V(DMSO)=1∶1、170℃反应1.5 h时,5-HMF的收率高达47.0%,且m-NbP经烧焦再生可重复利用5次而无明显失活。因此,m-NbP固体酸催化性能突出,能够高效催化葡萄糖一锅法制备5-HMF。
        A kind of mesoporous niobium phosphate( m-NbP) solid acid catalyst was successfully synthesized via convenient hydrothermal method. The obtained catalyst was characterized by X-ray diffraction( XRD),nitrogen adsorption-desorption,scanning electron microscopy( SEM),transmission electron microscopy( TEM),temperature-programmed desorption of ammonia( NH_3-TPD) and Fourier transform infrared spectra of pyridine adsorption( Py-FTIR). Then,the one-pot conversion of glucose to5-hydroxymethylfurural( 5-HMF) in a biphasic water/DMSO medium was investigated on the m-NbP catalyst. The factors affecting the yield of 5-HMF such as catalyst dosage,volume ratio of water to DMSO,reaction temperature,reaction time,and catalyst recyclability were studied. Moreover,the catalytic performance of m-NbP was compared with other three catalysts( Amberlyst-15,Nb_2O_5 and m-NbPF127). The results indicated that the m-NbP catalyst exhibited a promising catalytic performance for the preparation of 5-HMF due to its porous structure and adequate strong acid sites. The yield of 5-HMF could be as high as 47. 0% at 170 ℃ within 1. 5 h when the mass ratio of glucose to m-NbP was 2∶1 and the volume ratio of water to DMSO was 1∶1. Noticeably,the m-NbP catalyst could be recycled to reuse,after recycled five times,it showed no obvious deactivation after high-temperature calcination-regeneration. Therefore,the as-prepared m-NbP is an efficient catalyst for one-pot preparation of 5-HMF.
引文
[1]Vilcocq L,Castilho P C,Carvalheiro F,et al.Hydrolysis of oligosaccharides over solid acid catalysts:a review[J].Chem Sus Chem,2014,7(4):1010-1019.
    [2]Dibenedetto A,Aresta M,Pastore C,et al.Conversion of fructose into 5-HMF:a study on the behaviour of heterogeneous ceriumbased catalysts and their stability in aqueous media under mild conditions[J].RSC Adv,2015,5(34):26941-26948.
    [3]Bispo C,Oliveria Vigier K D,Sardo M,et al.Catalytic dehydration of fructose to HMF over sulfonic acid functionalized periodic mesoporous organosilicas:role of the acid density[J].Catal Sci Technol,2014,4(8):2235-2240.
    [4]Zhang Y L,Pan J M,Yan Y S,et al.Synthesis and evaluation of stable polymeric solid acid based on halloysite nanotubes for conversion of one-pot cellulose to 5-hydroxymethylfurfural[J].RSC Adv,2014,4(45):23797-23806.
    [5]Teimouria A,Mazaheria M,Chermahini A N,et al.Catalytic conversion of glucose to 5-hydroxymethylfurfural(HMF)using nano-POM/nano-Zr O2/nano-γ-Al2O3[J].J Taiwan Inst Chem E,2015,49:40-50.
    [6]Liu J,Li H,Liu Y C,et al.Catalytic conversion of glucose to 5-hydroxymethylfurfural over nano-sized mesoporous Al2O3-B2O3solid acids[J].Catal Commun,2015,62:19-23.
    [7]Gallo J M R,Alonso D M,Mellmer M A,et al.Production and upgrading of 5-hydroxymethyl-furfural using heterogeneous catalysts and biomass-derived solvents[J].Green Chem,2013,15(1):85-90.
    [8]Ordomsky V V,van der Schaaf J,Schouten J C,et al.The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites[J].J Catal,2012,287(1):68-75.
    [9]Karimi B,Mirzaei H M.The influence of hydrophobic/hydrophilic balance of the mesoporous solid acid catalysts in the selective dehydration of fructose into HMF[J].RSC Adv,2013,3(43):20655-20661.
    [10]Yan H P,Yang Y,Tong D M,et al.Catalytic conversion of glucose to 5-hydroxymethyl-furfural over SO42-/Zr O2and SO42-/Zr O2-Al2O3solid acid catalysts[J].Catal Commun,2009,10(11):1558-1563.
    [11]Kourieh R,Rakic V,Bennici S,et al.Relation between surface acidity and reactivity in fructose conversion into 5-HMF using tungstated zirconia catalysts[J].Catal Commun,2013,30(1):5-13.
    [12]Carlini C,Patrono P,Raspolli Galletti A M,et al.Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to5-hydroxymethyl-2-furaldehyde[J].Appl Catal A-Gen,2004,275(1/2):111-118.
    [13]Fan C Y,Guan H Y,Zhang H,et al.Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt[J].Biomass Bioenerg,2011,35(7):2659-2665.
    [14]Nakajima K,Baba Y,Noma R,et al.Nb2O5·H2O as a heterogeneous catalyst with water-tolerant lewis acid sites[J].J Am Chem Soc,2011,133(12):4224-4227.
    [15]Ordomsky V V,Sushkevich V L,Schouten J C,et al.Glucose dehydration to 5-hydroxymethylfurfural over phosphate catalysts[J].J Catal,2013,300(3):37-46.
    [16]Wang Y H,Tong X L,Yan Y T,et al.Efficient and selective conversion of hexose to 5-hydroxymethylfurfural with tinzirconium-containing heterogeneous catalysts[J].Catal Commun,2014,50(18):38-43.
    [17]Nowak I,Ziolek M.Niobium compounds:preparation,characterization,and application in heterogeneous catalysis[J].Chem Rev,1999,99(12):3603-3624.
    [18]Ordomsky V V,van der Schaaf J,Schouten J C,et al.Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system[J].Chem Sus Chem,2012,5(9):1812-1819.
    [19]Dunn E F,Liu D J,Chen E Y X.Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids[J].Appl Catal A-Gen,2013,460-461(11):1-7.
    [20]Sun P,Long X D,He H,et al.Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate[J].Chem Sus Chem,2013,6(11):2190-2197.
    [21]Cranston R W,Inkley F A.The determination of pore structures from nitrogen adsorption isotherms[J].Adv Catal,1957,9:143-154.
    [22]Corma A.Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J].Chem Rev,1995,95(3):559-614.
    [23]Jain A,Shore A M,Jonnalagadda S C,et al.Conversion of fructose,glucose and sucrose to 5-hydroxymethyl-2-furfural over mesoporous zirconium phosphate catalyst[J].Appl Catal A-Gen,2015,489:72-76.
    [24]Rocha A S,Forrester A M S,de la Cruz M H C,et al.Comparative performance of niobium phosphates in liquid phase anisole benzylation with benzyl alcohol[J].Catal Commun,2008,9(10):1959-1965.
    [24]Faungnawakij K,Kikuchi R,Matsui T,et al.A comparative study of solid acids in hydrolysis and steam reforming of dimethyl ether[J].Appl Catal A,2007,333(1):114-121.
    [25]Jia S Y,Xu Z W,Zhang Z C.Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride:role of water on the product distribution[J].Chem Eng J,2014,254(1):333-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700