Cu掺杂磷钼杂多酸催化剂的低温SCR脱硝性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on low temperature SCR denitration of Cu doped phosphomolybdate catalyst
  • 作者:李小海
  • 英文作者:LI Xiaohai;Datang Nanjing Environment Protection Technology Co., Ltd.;School of Chemical Engineering, Nanjing University of Science and Engineeing;
  • 关键词:选择性催化还原 ; 催化剂 ; 固定床 ; 磷钼酸 ; Cu掺杂
  • 英文关键词:selective catalytic reduction;;catalyst;;fixed-bed;;phosphomolybdic acid;;Cu doping
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:大唐南京环保科技有限责任公司;南京理工大学化工学院;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 语种:中文;
  • 页:HGJZ201906027
  • 页数:7
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:252-258
摘要
选用锐钛矿型TiO_2作为载体,以磷钼杂多酸(HPMo)掺杂Cu作为活性组分,采用浸渍法制备了CuHPMo/TiO_2负载型杂多酸SCR脱硝催化剂。研究了Cu掺杂比例、催化剂煅烧温度和活性组分负载量等因素对催化剂脱硝效率的影响,并通过XRD、BET和SEM等表征方法对催化剂结构特性进行了表征分析。活性测试结果表明,当活性组分配比为Cu∶Mo=3∶1,煅烧温度为350℃,活性组分负载量为10%时,催化剂的脱硝效率最佳,催化剂在200℃时NOx去除率即达到92%,在250℃时有着最高99%的NO_x去除率。XRD和BET等表征结果显示,Cu的加入增加了活性组分在催化剂表面的分散性,使比表面积增大;适量的Cu掺杂和适宜的煅烧温度有利于增强Cu与Mo的相互作用,使得活性组分分散性良好,晶粒体积减小,晶粒之间连接紧密及催化脱硝活性提高。
        SCR de-NOxcatalyst Cu-HPMo/TiO_2 was prepared by maceration method using anatase TiO_2 as support and Cu modified phosphorous molybdenum heteropoly acid(HPMo) as active component. The effects of Cu doping ratio, catalyst calcination temperature and the loading of active component on the denitration efficiency were studied, and the structure and properties of the catalyst were analyzed by means of XRD, BET and SEM, etc. The activity test results showed that the denitration efficiency of the catalyst was the highest when the mole ratio of Cu and Mo(Cu∶Mo) was 3∶1, calcination temperature was350℃ and the loading of active component was 10%. The denitration efficiency was 92% at 200℃ and it increased to 99% at 250℃.The BET analysis showed that the addition of Cu increased the dispersion of the active components on the surface of the catalysts leading to an enlarged surface area. Proper amount of Cu doping and calcining temperature are beneficial for enhancing the interaction between Cu and Mo,which could facilitate the dispersion of the active components, the decrease of the grain volume, the connection between grains and the denitration efficiency.
引文
[1] LI G, WANG B, WANG H, et al. Fe and/or Mn oxides supported on fly ash-derived SBA-15 for low-temperature NH3-SCR[J]. Catalysis Communications, 2018, 108:82-87.
    [2]李晨露,唐晓龙,易红宏,等. Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J].化工进展,2017,36(3):934-943.LI C L, TANG X L, YI H H, et al. Research progress on H2O resistance and SO2resistance of Mn based low-temperature SCR catalyst[J]. Chemical Industry and Engineering Progress, 2017,36(3):934-943.
    [3] WANG J, QIU Y, HE S, et al. Investigating the driving forces of NOx generation from energy consumption in China[J]. Journal of Cleaner Production, 2018,184:836-846.
    [4] BARREAU M, TAROT M L, DUPREZ D, et al. Remarkable enhancement of the selective catalytic reduction of NO at low temperature by collaborative effect of ethanol and NH3over silver supported catalyst[J]. Applied Catalysis B:Environmental, 2018,220:19-30.
    [5] ZHANG MH, HUANG B J, JIANG H X, et al. Research progress in the SO2resistance of the catalysts for selective catalytic reduction of NOx[J]. Chinese Journal of Chemical Engineering, 2017,25(12):1695-1705.
    [6]郭凤,余剑,TRAN Tuyet-Suong,等.溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J].化工学报,2017,68(10):3747-3754.GUO F, YU J, TRAN T-S, et al. In-situ synthesis of vanadium,tungsten, titanium and NH3-SCR by sol-gel catalyst[J]. CIESC J.,2017,68(10):3747-3754.
    [7] ODENBRAND C U I. CaSO4deactivated V2O5-WO3/TiO2SCR catalyst for a diesel power plant. characterization and simulation of the kinetics of the SCR reactions[J]. Applied Catalysis B:Environmental,2018,234:365-377.
    [8]黄金,仲兆平,朱林,等.锰铈改性钒钨钛中低温SCR催化剂脱硝及抗水抗硫性能[J].化工进展,2018,37(6):2242-2248.HUANG J, ZHONG Z P, ZHU L, et al. Denitrification, water resistance Engineering sulfur resistance of low temperature SCR catalyst modified by Mn-cerium in vanadium, tungsten and titanium[J].Chemical Industry and Engineering Progress, 2018,37(6):2242-2248.
    [9] KOWALCZYK A,?WI?S A, GIL B, et al. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange(TIE)method[J]. Applied Catalysis B:Environmental, 2018,237:927-937.
    [10] W?RLE-KNIRSCH J M, KERN K, SCHLEH C, et al. Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells[J].Environmental Science&Technology, 2007,41(1):331-336.
    [11]马景琦. SCR催化剂的研究进展[J].科技资讯,2017(10):112-113.MA J Q. Research progress of SCR catalyst[J]. Science and Technology Information, 2017(10):112-113.
    [12] LI M, GUO R, HU C, et al. The enhanced resistance to K deactivation of Ce/TiO2catalyst for NH3-SCR reaction by the modification with P[J]. Applied Surface Science, 2018,436:814-822.
    [13] HU X, SHI Q, ZHANG H, et al. NH3-SCR performance improvement over Mo modified Mo(x)-MnOx nanorods at low temperatures[J].Catalysis Today, 2017,297:17-26.
    [14]史德明,陈光,张松,等.一种具有强抗硫抗水性能的低温脱硝催化剂及其制备方法:CN107088433A[P]. 2017-08-25.SHI D M, CHEN G, ZHANG S, et al. A low temperature denitrification catalyst with strong sulfur and water resistance and its preparation method:CN107088433A[P]. 2017-08-25.
    [15]张序,李建军,刘琪琪,等.炭基磷钨酸催化剂的脱硝性能[J].环境工程学报,2016(2):799-804.ZHANG X, LI J J, LIU Q Q, et al. Denitrification performance of carbon-based phosphotungstic acid catalyst[J]. Chinese Journal of Environmental Engineering, 2016(2):799-804.
    [16] SUBBA R B V, NARASIMHULU G, SUBBA L P, et al.Phosphomolybdic acid:a highly efficient solid acid catalyst for the synthesis of trans-4,5-disubstituted cyclopentenones[J]. Tetrahedron Letters, 2012,53(14):1776-1779.
    [17] BHORODWAJ S K, DUTTA D K. Activated clay supported heteropoly acid catalysts for esterification of acetic acid with butanol[J]. Applied Clay Science, 2011, 53(2):347-352.
    [18] REN Z, TENG Y, ZHAO L, et al. Keggin-tungstophosphoric acid decorated Fe2O3nanoring as a new catalyst for selective catalytic reduction of NOx with ammonia[J]. Catalysis Today, 2017,297:36-45.
    [19] WENG X, DAI X, ZENG Q, et al. DRIFT studies on promotion mechanism of H3PW12O40in selective catalytic reduction of NO with NH3[J]. Journal of Colloid and Interface Science, 2016,461:9-14.
    [20]田青青.杂多酸负载二氧化铈的NOx选择性催化还原应用研究[D].杭州:浙江大学,2014.TIAN Q Q. Application of NOx selective catalytic reduction of cerium dioxide supported by heteropoly acid[D]. Hangzhou:Zhejiang University,2014.
    [21] HALASZ I, BRENNER A, SIMON K Y, et al. Catalytic activity and selectivity of H-ZSM5 for the reduction of nitric oxide by propane in the presence of oxygen[J]. Journal of Catalysis,1996, 161:359-372.
    [22]李晨旭. Cu改性V/WTi催化剂低温NH3-SCR性能研究[D].天津:天津大学,2015.LI C X. Study on NH3-SCR properties of Cu modified V/WTi catalyst at low temperature[D]. Tianjin:Tianjin University, 2015.
    [23] WU S, LI H, LI L, et al. Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2catalyst[J].Fuel, 2015,159:876-882.
    [24] CHUAI H, ZHOU D, ZHU X, et al. Characterization of V2O5/MoO3composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate[J]. Chinese Journal of Catalysis, 2015,36:2194-2202.
    [25] SI Z, WENG D, WU X, et al. Structure, acidity and activity of CuOx/WOx-ZrO2catalyst for selective catalytic reduction of NO by NH3[J].Journal of Catalysis, 2010,271(1):43-51.
    [26] KIM M H, PARK S W. Selective reduction of NO by NH3over Fezeolite-promoted V2O5-WO3/TiO2-based catalysts:great suppression of N2O formation and origin of NO removal activity loss[J]. Catalysis Communications, 2016,86:82-85.
    [27]任旭婷. Mn-Ce/TiO2低温脱硝催化剂的制备及改性研究[D].北京:中国石油大学(北京),2016.REN X T. Preparation and modification of Mn-Ce/TiO2low temperature denitrification catalyst[D]. Beijing:China University of Petroleum(Beijing), 2016.
    [28]陈勇. TiO2负载Ce改性VPO催化剂的低温SCR脱硝性能研究[D].马鞍山:安徽工业大学,2017.CHEN Y. Study on low-temperature SCR denitrification performance of TiO2supported Ce modified VPO catalyst[D]. Maanshan:Anhui University of Technology, 2017.
    [29] DEVIKALA S, KAMARAJ P, ARTHANAREESWARI M. AC conductivity studies of PMMA/TiO2composites[J]. Materials Today:Proceedings, 2018,5(2):8678-8682.
    [30] YANG R, HUANG H, CHEN Y, et al. Performance of Cr-doped vanadia/titania catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Catalysis, 2015,36(8):1256-1262.
    [31]万马,张先龙,郭亚晴,等.锰负载量对MnOx/PG催化剂低温SCR反应的影响[J].环境工程学报,2016,10(10):5749-5754.WAN M, ZHANG X L, GUO Y Q, et al. Effect of manganese loading on low temperature SCR reaction of MnOx/PG catalyst[J]. Journal of Environmental Engineering, 2016, 10(10):5749-5754.
    [32] PANG L, FAN C, SHAO L, et al. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J].Chemical Engineering Journal, 2014, 253:394-401.
    [33] YUAN J, YANG M, HU Q, et al. Cu/TiO2nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2to different alcohols[J]. Journal of CO2Utilization, 2018,24:334-340.
    [34] GUAN B, LIN H, ZHU L, et al. Selective catalytic reduction of NOx with NH3over Mn, Ce substitution Ti0.9V0.1O2-δnanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. The Journal of Physical Chemistry C, 2011, 115(26):12850-12863.
    [35]王大文,钟顺和.二氧化碳与丙烯直接合成甲基丙烯酸用CuPMo/TiO2催化剂的研究[J].催化学报, 2003, 24(9):705-710.WANG D W, ZHONG S H. CuPMo/TiO2catalyst for the direct synthesis of acrylic acid from carbon dioxide and propylene[J]. Journal of Catalysis, 2003, 24(9):705-710.
    [36] CHIRANJIT S, SNEHA S, ANIRUDDHA M, et al. Synthesis,characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J].Microporous and Mesoporous Materials, 2016, 223:121-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700