锰掺杂氧化锌纳米颗粒的制备及抗菌性能评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and antibacterial activity evaluation of Mn-doped ZnO nanoparticles
  • 作者:赵玉华 ; 何涛 ; 崔元龙 ; 谢晓清 ; 赵艳
  • 英文作者:Zhao Yuhua;He Tao;Cui Yuanlong;Xie Xiaoqing;Zhao Yan;College of Chemistry and Chemical Engineering,Yantai University;College of Life Sciences,Yantai University;
  • 关键词:催化剂工程 ; 氧化锌 ; 锰掺杂 ; 抗菌活性
  • 英文关键词:catalyst engineering;;ZnO;;Mn doping;;antimicrobial activity
  • 中文刊名:GYCH
  • 英文刊名:Industrial Catalysis
  • 机构:烟台大学化学与化工学院;烟台大学生命科学学院;
  • 出版日期:2019-04-15
  • 出版单位:工业催化
  • 年:2019
  • 期:v.27;No.247
  • 语种:中文;
  • 页:GYCH201904014
  • 页数:4
  • CN:04
  • ISSN:61-1233/TQ
  • 分类号:75-78
摘要
采用一种简单的固相研磨方法制备氧化锌及锰掺杂的氧化锌纳米颗粒。利用透射电子显微镜、X射线粉末衍射对样品进行结构表征。以抑菌圈实验,最小抑菌浓度和抗菌动力学曲线对样品抗菌活性进行测试。结果表明,掺杂质量分数0.5%的锰可以显著提高暗态下氧化锌的抗菌活性。与未掺杂氧化锌纳米颗粒相比,其最小抑菌浓度显著减小,失活动力学常数明显增大,而这种活性的提高有可能是锰掺杂导致氧化锌晶体缺陷增多所致。
        Nanoparticles of ZnO and Mn-doped ZnO were prepared by a simple solid-state grinding method.Transmission electron microscopy and X-ray powder diffraction were used to characterize structures of the samples.Inhibition zone test,minimum inhibitory concentration and antimicrobial kinetics curve were used to evaluate their antimicrobial activity.The results showed that antimicrobial activity of ZnO nanoparticles doped with Mn mass fraction of 0.5% was remarkably improved in the dark.Compared with undoped ZnO nanoparticles,the minimum inhibitory concentration is significantly reduced,and the inactivation kinetic constant is increased remarkably.The improvement of antibacterial activity may be resulted from the increase of crystal defects of ZnO caused by Mn doping.
引文
[1]南军,于海斌,薛群,等.低温固相法制备纳米氧化锌及其在脱硫中的应用[J].工业催化,2010,18(8):46-51.Nan Jun,Yu Haibin,Xue Qun,et al.Synthesis and desulfurization behaviors of nanosized ZnO sobrent prepared by low-temperautre solid-state reaction[J].Industrial Catalysis,2010,18(8):46-51.
    [2]靳斌斌,刘延忠,闫晓前,等.纳米线和纳米碗的合成及其光催化性能[J].工业催化,2011,19(9):30-33.Jin Binbin,Liu Yanzhong,Yan Xiaoqian,et al.PreParation and photocatalytic activity of ZnO nanowires and nanobowls[J].Industrial Catalysis,2011,19(9):30-33.
    [3]Mirhosseini M,Firouzabadi F B.Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens[J].International Journal of Dairy Technology,2013,66(2):291-295.
    [4]Swain P,Nayak S K,Sasmal A,et al.Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture[J].World Journal of Microbiology & Biotechnology,2014,30(9):2491-2502.
    [5]Saleh N B,Milliron D J,Aich N,et al.Importance of doping, dopant distribution,and defects on electronic band structure alteration of metal oxide nanoparticles:Implications for reactive oxygen species[J].Science of the Total Environment,2016,568:926-932.
    [6]Sehmi S K,Noimark S,Pike S D,et al.Enhancing the antibacterial activity of light-activatedsurfaces containing crystal violet and ZnO nanoparticles:investigationof nanoparticle size,capping ligand,and dopants[J].Acs Omega,2016,1(3):334-343.
    [7]Anandan M,Dinesh S,Krishnakumar N,et al.Improved photocatalytic properties and anti-bacterial activity of size reduced ZnO nanoparticles via PEG-assisted precipitation route[J].Journal of Materials Science Materials in Electronics,2016,27(12):12517-12526.
    [8]Sharma N,Jandaik S,Kumar S,et al.Synthesis,characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles[J].Journal of Experimental Nanoscience,2016,11(1):54-71.
    [9]沈萍,陈向东.微生物学实验 [M].北京:高等教育出版社,2007:1-97.
    [10]Wiegand I,Hilpert K,Hancock R E W.Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J].Nature Protocols,2008,3(2):163-175.
    [11]陈若飞.氧化铟抗菌性能研究[J].沈阳化工大学学报,2009,23(3):230-234.Chen Ruofei.Study on antimicrobial properties of indium oxide[J].Journal of Shenyang University of Chemical Technology,2009,23(3):230-234.
    [12]Liga M V,Maguire-Boyle S J,Jafry H R,et al.Silica decorated TiO2 for virus inactivation in drinking water-simple synthesis method and mechanisms of enhanced inactivation kinetics[J].Environmental Science & Technology,2013,47(12):6463-6470.
    [13]Drits V.XRD measurement of mean crystallite thickness of illite and illite/ smectite:Reappraisal of the Kubler index and the Scherrer equation[J].Clays & Clay Minerals,1997,45(3):461-475.
    [14]Lakshmi P V,Vijayaraghavan R.Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO[J].Materials Science & Engineering C,2017,77:1027-1034.
    [15]Hao Y J,Liu B,Tian L G,et al.Synthesis of {111} facet-exposed MgO with surface oxygen vacancies for reactive oxygen species generation in the dark[J].ACS Applied Materials & Interfaces,2017,9(14):12687-12693.
    [16]Lakshmi P V,Vijayaraghavan R.Insight into the mechanism of antibacterial activity of ZnO:surface defects mediated reactive oxygen species even in dark[J].Langmuir, 2015,31(33):9155-9162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700