基于图像法的甲醇制烯烃流化床反应器内催化剂颗粒输送分离高度的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Transport Disengaging Height of Catalyst Particles in Fluidized Bed Reactor for Methanol to Olefins Based on Image Method
  • 作者:邱嘉明 ; 陆勇 ; 张勉照 ; 肖睿 ; 叶茂
  • 英文作者:QIU Jiaming;LU Yong;ZHANG Mianzhao;XIAO Rui;YE Mao;
  • 关键词:甲醇制烯烃 ; 催化剂颗粒 ; 输送分离高度 ; 浓度分布 ; 数字图像处理
  • 英文关键词:Catalyst particles;;Transport disengaging height;;Concentration distribution;;Digital image processing
  • 中文刊名:HGZB
  • 英文刊名:Chemical Equipment Technology
  • 机构:东南大学能源与环境学院;中国科学院大连化学物理研究所;
  • 出版日期:2018-04-10
  • 出版单位:化工装备技术
  • 年:2018
  • 期:v.39;No.230
  • 基金:国家自然科学基金(6503000053);; 江苏省科技成果转化专项资金项目(BA2016064)
  • 语种:中文;
  • 页:HGZB201802001
  • 页数:7
  • CN:02
  • ISSN:31-1587/T
  • 分类号:7-13
摘要
甲醇制烯烃(MTO)生产过程中,输送分离高度直接影响反应器和再生器的结构尺寸、相关位置及催化剂的损失等。使用平均粒径为90 mm的工业MTO催化剂颗粒,在覫90 mm×1 000 mm的有机玻璃冷态试验台上对催化剂颗粒的浓度分布和输送分离高度随流化气速的变化情况进行研究。采用粒子图像测速技术获取冷态床的实验图像,并通过数字图像处理技术最终获得MTO催化剂颗粒的浓度分布。在此基础上建立数学模型,进行计算回归,得到其与催化剂颗粒输送分离高度的实验关联式。
        During the process of methanol to olefins( MTO),Transport Disengaging Height( TDH) directly affects the structure, size, relevant positions of reactor and regenerator during the production, as well as the loss of catalyst. The average particle diameter of industrial methanol to olefin catalyst particles used was 90 mm. The catalyst particle concentration distribution and TDH varied with the fluidizing gas velocity were studied in the organic glass cold state test rig. Particle image velocimetry( PIV) was used to acquire the experimental image of cold bed, and the concentration distribution of MTO catalyst particles was finally obtained by digital image processing technology. On the basis of regression analysis to the experimental data, a mathematical model was established and the experimental correlation for TDH of catalyst particles was obtained.
引文
[1]吴占松,马润田,汪展文.流态化技术基础及应用[M].北京:化学工业出版社,2006.
    [2]邹学军,杨贵林.流化床中颗粒夹带和扬析的研究进展[J].化学反应工程与工艺,1986,2(4):1-11.
    [3]梁忠英.求取扬析速率的实验关联式[J].沈阳化工,1993(2):25-30.
    [4]薛惠芳.FCC在大型流化催化裂化装置内夹带分离高度研究[J].沈阳化工学院学报,1996,10(4):327-333.
    [5]ZENZ F A,WEIL N A.A theoretical-empirical approach to the mechanism of particle entrainment from fluidized beds[J].AICh E Journal,1958,4(4):472-479.
    [6]HORIO M,WEN C Y.Simulation of fluidized bed combustors.Ⅰ-Combustion efficiency and temperature profile,Nov.28-Dec.2,1976[C].Chicago:IL,1976.
    [7]AMITIN A V,MARTYUSHIN IG,GUREVICH DA.Dusting in the space above the bed in converters with a fluidized catalyst bed[J].Chemistry and Technology of Fuels and Oils[J],1968,4(3):181-184.
    [8]石惠娴,王勤辉,骆仲泱,等.PIV应用于气固多相流动的研究现状[J].动力工程,2002,22(1):1589-1593.
    [9]LINDKEN R,MERZKIRCH W.A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows[J].Experiments in Fluids,2002,33(6):814-825.
    [10]LU Y,WANG F L,WANG S M.Measuring particle size distribution and total number in the activation chamber of desulfurization system by PIV[J].Journal of Southeast University,2003,19(1):83-87.
    [11]杨丹,赵海滨,龙哲,等.MATLAB图像处理实例详解[M].北京:清华大学出版社,2013.
    [12]张涛,齐永奇.MATLAB图像处理编程与应用[M].北京:机械工业出版社,2014.
    [13]CONZALEZ R C,WOODS R E.数字图像处理[M]阮秋琦译.北京:电子工业出版社,2009.
    [14]刘成龙.精通MATLAB图像处理[M].北京:清华大学出版社,2015.
    [15]刘中民,刘昱,叶茂,等.1.80 Mt/a甲醇进料DMTO工艺技术及其装置特点[J].炼油技术与工程,2014,44(7):1-6.
    [16]李洪钟,郭慕孙.气固流态化的散式化[M].北京:化学工业出版社,2002.
    [17]刘伟伟,卢春喜,范怡平,等.气固流化床中双组分混合颗粒的流态化特性[J].化工学报,2008,59(8):1971-1978.
    [18]杨海瑞,顾明星,MCHUGH B等.流化风速、床料量、粒径及其分布对扬析率的影响[J].化工冶金增刊,1999(20):62-267.
    [19]袁竹林,朱立平,耿凡,等.气固两相流动与数值模拟[M].南京:东南大学出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700