PTFE/Bi-SnO_2-CNT电催化膜的结构及性能表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of the structure and performance of bismuth doped tin oxide coated PTFE/CNT electrocatalytic membrane
  • 作者:张新奇 ; 朱孟府 ; 邓橙 ; 赵蕾 ; 刘红斌 ; 马军
  • 英文作者:ZHANG Xinqi;ZHU Mengfu;DENG Cheng;ZHAO Lei;LIU hongbin;MA Jun;Institute of Medical Support Technology, Academy of Military Sciences of Chinese PLA;
  • 关键词:催化膜 ; 碳纳米管 ; 铋掺杂二氧化锡 ; 双酚A ; 电化学-水热法
  • 英文关键词:electrocatalytic membrane;;carbon nanotube;;bismuth doped tin oxide;;BPA;;electrosorption-hydrothermal method
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:军事科学院系统工程研究院卫勤保障技术研究所;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:国家自然科学基金(51878659)
  • 语种:中文;
  • 页:MKXY201901009
  • 页数:7
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:38-44
摘要
为了提高电催化膜的电催化性能,通过电化学-水热法制备了以聚四氟乙烯(PTFE)微孔膜为支撑,Bi掺杂SnO_2修饰的碳纳米管(CNT)电催化膜(PTFE/Bi-SnO_2-CNT),分别进行了膜的电化学性能分析、形态结构表征及水中双酚A (BPA)降解性能实验。结果表明,PTFE/Bi-SnO_2-CNT为多孔导电网络结构,Bi-SnO_2颗粒均匀负载在碳纳米管表面,粒径为3.8 nm,当铋锡摩尔比为1∶15、电沉积电压为2.5 V时,制备的PTFE/Bi-SnO_2-CNT析氧电势为1.75 V,在3 V直流电压下,连续运行12 h, PTFE/Bi-SnO_2-CNT对浓度为30 mg/L的BPA降解率可达76.3%.这一结果说明PTFE/Bi-SnO_2-CNT具有良好的电化学性能、BPA吸附和降解性能,可成为电催化降解水中有机物的新型膜材料.
        In order to improve the electrocatalytic performance of electrocatalytic membranes, PTFE/Bi-SnO_2-CNT electrocatalytic membrane was prepared by vaccum filtration and electrochemical-hydrothermal method. Electrochemical performance analysis, morphological structure characterization and aqueous BPA degradation experiments were further carried out. The results show that PTFE/Bi-SnO_2-CNT possesses a porous conductive network structure. Bi-SnO_2 nanoparticles are uniformly coated on the surface of carbon nanotubes with an average size of 3.8 nm. When the molar ratio of bismuth to tin is 1∶15 and the electrodeposition voltage is 2.5 V, the oxygen evolution potential of the prepared PTFE/Bi-SnO_2-CNT is 1.75 V. Under the voltage of 3.0 V and concentration of 30 mg/L, the BPA degradation rate of PTFE/Bi-SnO_2-CNT can reach 76.3% after 12 h operation. It shows that PTFE/Bi-SnO_2-CNT has excellent electrochemical performance, BPA adsorption and degradation properties. This indicates that PTFE/Bi-SnO_2-CNT will have promising application prospects for electrocatalytic degradation of organic compounds in water.
引文
[1] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochemical Acta, 1994, 39(11/12): 1857-1862.
    [2] 李建新, 王虹, 杨阳. 膜技术处理印染废水研究进展[J]. 膜科学与技术, 2011, 31(3): 145-148.
    [3] 戴军, 袁惠新, 俞建峰. 膜技术在含油废水处理中的应用[J]. 膜科学与技术, 2002, 22(1): 59-64.
    [4] 张秀伟, 王虹, 杨阳,等. 基于含油废水处理的电催化膜反应器优化设计及性能研究[J]. 膜科学与技术, 2012, 32(5):19-26.
    [5] 王细凤, 潘艳秋, 王同华. 炭膜处理含油污水的研究[J]. 膜科学与技术, 2001, 21(6):59-62.
    [6] Wang C, Meng F, Wang T, et al. Monolithic coal-based carbon counter electrodes for highly efficient dye-sensitized solar cells[J]. Carbon, 2014, 67(2):465-474.
    [7] Song C, Wang T, Pan Y, et al. Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment[J]. Sep Purif Technol, 2006, 51(1):80-84.
    [8] Jorge E Y H, Wang Z, Lege S, et al. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles[J]. Water Res, 2017, 108:78-85.
    [9] Zhao H, Shi Q, Wu L, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. J Membr Sci, 2014, 450: 249-256.
    [10] 刘志猛, 朱孟府, 邓橙,等. Sb - SnO2/炭膜对水中四环素电催化降解性能研究[J]. 水处理技术, 2016, 12): 64-67.
    [11] Liu Z, Zhu M, Wang Z, et al. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane[J]. AIP Adv, 2016, 6(5): 891-914.
    [12] Liu Z, Zhu M, Wang Z, et al. Effective degradation of aqueous tetracycline using a nano - TiO2/carbon electrocatalytic membrane[J]. Materials, 2016, 9(5): 364.
    [13] Ahn Y Y, Yang S Y, Choi C, et al. Electrocatalytic activities of Sb - SnO2 and Bi - TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte[J]. Catal Today, 2016, 282(1):57-64.
    [14] Liu Z, Zhu M, Zhao L, et al. Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating [J]. Chem Eng J, 2017, 314:59-68.
    [15] Ajmani G S, Goodwin D, Marsh K, et al. Modification of low pressure membranes with carbon nanotube layers for fouling control[J]. Water Res, 2012, 46(17): 5645-5654.
    [16] Kim Y K, Park H. How and to what extent do carbon materials catalyze solar hydrogen production from water? [J]. Appl Catal B Environ, 2012, 125(125): 530-537.
    [17] George R, Kashyap K T, Rahul R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J]. Scripta Mater, 2005, 53(10): 1159-1163.
    [18] Yang S Y, Choi W, Park H. TiO2 nanotube array photoelectrocatalyst and Ni - Sb - SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment [J]. ACS Appl Mater Interf, 2015, 7(3): 1907-1914.
    [19] Liu H, Vajpayee A, Vecitis C D. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation [J]. ACS Appl Mater Interf, 2013, 5(20): 10054-10066.
    [20] Li H, Liu J, Qian J, et al. Preparation of Bi-doped TiO2 nanoparticles and their visible light photocatalytic performance[J]. Chinese J Catal, 2014, 35(9): 1578-1589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700