催化与分离双功能膜及膜反应器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Catalytic and separative difunctional membrane and membrane reactor
  • 作者:张昊 ; 马晓华 ; 许振良
  • 英文作者:ZHANG Hao;MA Xiaohua;XU Zhenliang;Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology;
  • 关键词:催化膜 ; 制备 ; 膜反应器
  • 英文关键词:catalytic membrane;;preparation;;membrane reactor
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:华东理工大学上海市多相结构材料化学工程重点实验室化学工程研究所膜科学与工程研发中心;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:国家自然科学基金-青年基金(21406060)
  • 语种:中文;
  • 页:MKXY201901026
  • 页数:9
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:120-128
摘要
随着化学工业的快速发展,人们对环境污染越来越重视,大宗化学品已经不能满足人们日益增长的物质文化需求.清洁、安全、小批量、低能耗、高品质的精细化工产品受到广大生产者的青睐.催化与分离双功能膜集催化与分离于一体,能有效地解决催化反应中后续产品分离等问题,提高反应的转化率和选择性,降低能耗,实现化工过程的强化.但由于其较高的制备成本、未成熟的工艺流程,限制了其工业应用和发展.本文系统地介绍了催化膜及膜反应器的制备与研究进展,以及在化工过程强化中的应用.
        With the rapid development of chemical industry, environmental pollution has obtained more attention that bulk chemicals have failed to meet the demand of growing material culture. Fine chemicals with a large number of unique properties are favored by many producers. Membranes with catalytic and separative functions can effectively solve the problems of subsequent product separation in the catalytic reaction, thus improve the conversion and selectivity, reduce the energy consumption, and enhance the chemical process. However, because of its high cost of preparation and immature technology process, its industrial application and development are limited. In this review, the preparation methods, research progress and applications of catalytic membranes and membrane reactors are systematically introduced.
引文
[1] Abdallah H. A Review on Catalytic Membranes Production and Applications[J]. Bullet Chem React Eng Catal, 2017, 12(2): 136.
    [2] 周永华, 叶红齐, 陈春辉. “催化接触器”型膜反应器的研究进展[J]. 工业催化, 2007, 15(11): 6-10.
    [3] 王建宇, 徐又一, 朱宝库. 高分子催化膜及膜反应器研究进展[J]. 膜科学与技术, 2007, 27(6): 82-88.
    [4] Macanás J, Ouyang L, Bruening M L, et al. Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles[J]. Catal Today, 2010, 156(3/4): 181-186.
    [5] Alpatova A, Meshref M, Mcphedran K N, et al. Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants[J]. J Membr Sci, 2015, 490: 227-235.
    [6] Gui M, Smuleac V, Ormsbee L E, et al. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water[J]. J Nanopart Res, 2012, 14(5): 861.
    [7] Bernal M P, Coronas J, Menéndez M, et al. Coupling of reaction and separation at the microscopic level: Esterification processes in a H - ZSM - 5 membrane reactor[J]. Chem Eng Sci, 2002, 57(9): 1557-1562.
    [8] David M O, Nguyen Q T, Néel J. Pervaporation membranes endowed with catalytic properties, based on polymer blends[J]. J Membr Sci, 1992, 73(2/3): 129-141.
    [9] Ma X H, Wen X, Gu S W, et al. Preparation and characterization of catalytic TiO2 - SPPESK - PES nanocomposite membranes and kinetics analysis in esterification[J]. J Membr Sci, 2013, 430(3): 62-69.
    [10] Zhang W, Qing W, Ning C, et al. Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes[J]. J Membr Sci, 2014, 451(1): 285-292.
    [11] Nguyen Q T, M''Bareck C O, David M O, et al. Ion-exchange membranes made of semi-interpenetrating polymer networks, used for pervaporation-assisted esterification and ion transport[J]. Mater Res Innovations, 2003, 7(4): 212-219.
    [12] Casimiro M H, Silva A G, Alvarez R, et al. PVA supported catalytic membranes obtained by γ-irradiation for biodiesel production[J]. Radiat Phys Chem, 2014, 94:171-175.
    [13] Peters T A, Benes N E, Keurentjes J T F. Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol[J]. Appl Catal A, 2007, 317(1): 113-119.
    [14] Peters T A, Tuin J V D, Houssin C, et al. Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation[J]. Catal Today, 2005, 104(2): 288-295.
    [15] Ma X H, Xu Z L, Liu Y, et al. Preparation and characterization of PFSA - PVA - SiO2/PVA/PAN difunctional hollow fiber composite membranes[J]. J Membr Sci, 2010, 360(1/2): 315-322.
    [16] Ji C H, Xue S M, Xu Z L, et al. Fabrication and characterization of novel hollow fiber catalytic packing of PFSA - PES - ZrO2(shell) - TiO2 (core) solid superacid via wet-spinning method[J]. Chem Eng Sci, 2016, 152:1-11.
    [17] Lu P P, Xu Z L, Ma X H, et al. Preparation and characterization of perfluorosulfonic acid nanofiber membranes for pervaporation-assisted esterification[J]. Ind Eng Chem Res, 2013, 52(24): 8149-8156.
    [18] Ma X H, Dong Z Q, Zhang P Y, et al. Preparation and characterization of superhydrophilic PVDF electrospun nanofibrous membrane based on in situ free radical polymerization[J]. Mater Lett, 2015, 156: 58-61.
    [19] Ma X H, Gu S W, Wen X, et al. Spinnability of SPPESK and its application in esterification[J]. J Polym Res, 2013, 20(6): 155.
    [20] Ma X H, Gu S W, Xu Z L. Structure and property of PFSA/PES porous catalytic nanofibers[J]. Catal Today, 2016, 276: 133-138.
    [21] Ma X H, Wen X, Xu Z L. Reactive distillation performance of difunctional hollow fiber composite membranes with catalytic and separative properties as structured packing[J]. Ind Eng Chem Res, 2013, 52(17): 5958-5966.
    [22] Ma X H, Zhang H X, Gu S W, et al. Process optimization and modeling of membrane reactor using self-sufficient catalysis and separation of difunctional ceramic composite membrane to produce methyl laurate[J]. Sep Purif Technol, 2014, 132: 370-377.
    [23] 刘洋, 许振良, 马晓华. 中空纤维PVA/PAN复合膜填料的乙醇水溶液精馏性能[J]. 高校化学工程学报, 2012, 26(2): 183-188.
    [24] 陆培培, 许振良, 杨虎, 等. PFSA - PES - 纳米颗粒复合纳米纤维的制备及催化性能[J]. 化工学报, 2013, 64(4): 1466-1472.
    [25] 马晓华, 温馨, 许振良, 等. 纳米二氧化硅填充催化与分离双功能复合膜的性能[J]. 华东理工大学学报, 2011, 37(6): 668-672.
    [26] 温馨, 马晓华, 许振良, 等. 具有催化与渗透汽化双功能的纳米TiO2和Al2O3填充复合膜性能[J]. 膜科学与技术, 2012, 32(3): 1-5.
    [27] 许振良, 马晓华, 魏永明, 等. 催化与PV双功能中空纤维复合膜制备及其应用过程[J]. 膜科学与技术, 2011, 31(3): 210-215.
    [28] Chen Y, Jia W, Hu J, et al. Performance of catalytically active membrane reactors with different A/V ratios[J]. Trans Tianjin University, 2017, 23(6): 1-9.
    [29] Qing W, Chen J, Shi X, et al. Conversion enhancement for acetalization using a catalytically active membrane in a pervaporation membrane reactor[J]. Chem Eng J, 2016, 313.
    [30] Qing W, Wu J, Chen N, et al. A genuine in-situ water removal at a molecular lever by an enhanced esterification-pervaporation coupling in a catalytically active membrane reactor[J]. Chem Eng J, 2017.
    [31] Qing W, Wu J, Deng Y, et al. A novel catalytically active membrane with highly porous catalytic layer for the conversion enhancement of esterification: focusing on the reduction of mass transfer resistance of the catalytic layer[J]. J Membr Sci, 2017.
    [32] Su X, Zhang W, Qing W, et al. Modeling study of a pervaporation membrane reactor for improving oxime hydrolysis reaction[J]. J Membr Sci, 2016, 497.
    [33] Zhang W, Qing W, Ren Z, et al. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor[J]. Bioresour Technol, 2014, 172:16-21.
    [34] Zhang W, Xing S, Hao Z, et al. A pervaporation membrane reactor for producing hydroxylamine chloride via oxime hydrolysis reaction[J]. Ind Eng Chem Res, 2015, 54(1): 100-107.
    [35] Westermann T, Melin T. Flow-through catalytic membrane reactors - Principles and applications[J]. Chem Eng Process, 2009, 48(1): 17-28.
    [36] Marcano J G S, Tsotsis T T. Catalytic Membranes and Membrane Reactors[M]//Wiley - VCH, 2002.
    [37] Ikeguchi M, Mimura T, Sekine Y, et al. Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3-δ membrane reactor for partial oxidation of methane to syngas[J]. Appl Catal A, 2005, 290(1): 212-220.
    [38] Dittmeyer R, H?llein V, Daub K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium[J]. J Mol Catal A Chem, 2001, 173(1/2): 135-184.
    [39] She Y, Han J, Ma Y H. Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene[J]. Catal Today, 2001, 67(1/3): 43-53.
    [40] Lin Y M, Rei M H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor[J]. Catal Today, 2001, 67(1): 77-84.
    [41] Tong J, Matsumura Y. Pure hydrogen production by methane steam reforming with hydrogen-permeable membrane reactor[J]. Catal Today, 2006, 111(3): 147-152.
    [42] Mendes D, Sá S, Tosti S, et al. Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd-Ag packed-bed membrane reactor[J]. Chem Eng Sci, 2011, 66(11): 2356-2367.
    [43] Hwang K R, Ihm S K, Park J S. A catalytic membrane reactor for water-gas shift reaction[J]. Korean J Chem Eng, 2010, 27(3): 816-821.
    [44] Lipnizki F, Field R W, Ten P K. Pervaporation-based hybrid process: a review of process design, applications and economics[J]. J Membr Sci, 1999, 153(2): 183-210.
    [45] Espinoza R L, Toit E D, Santamaria J, et al. Use of membranes in Fischer-Tropsch reactors[J]. Stud Surf Sci Catal, 2000, 130(2): 389-394.
    [46] Kobayashi M, Togawa J, Kanno T, et al. Dramatic innovation of propene epoxidation efficiency derived from a forced flow membrane reactor[J]. J Chem Technol Biotechnol, 2010, 78(2/3): 303-307.
    [47] Zhu B, Li H, Yang W. AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein[J]. Catal Today, 2003, 82(1): 91-98.
    [48] Lange C, Storck S, Tesche B, et al. Selective hydrogenation reactions with a microporous membrane catalyst, prepared by sol-gel dip coating[J]. J Cata, 1998, 175(2): 280-293.
    [49] Ziegler S, Theis J, Fritsch D. Palladium modified porous polymeric membranes and their performance in selective hydrogenation of propyne[J]. J Membr Sci, 2001, 187(1): 71-84.
    [50] Torres M, López L, DomíNguez J M, et al. Olefins catalytic oligomerization on new composites of beta-zeolite films supported on α-Al2O3 membranes[J]. Chem Eng J, 2003, 92(1): 1-6.
    [51] Fritsch D, Randjelovic I, Keil F. Application of a forced-flow catalytic membrane reactor for the dimerisation of isobutene[J]. Catal Today, 2004, 98(1): 295-308.
    [52] Khassin A A, Sipatrov A G, Chermashetseva G K, et al. Fischer-tropsch synthesis using plug-through contactor membranes based on permeable composite monoliths. Selectivity control by porous structure parameters and membrane geometry[J]. Topics in Catal, 2005, 32(1/2): 39-46.
    [53] 朱长乐. 膜科学技术 [M]//北京: 高等教育出版社, 2004.
    [54] 陈翠仙, 韩宾兵, 朗宁·威, 等. 渗透蒸发和蒸气渗透 [M]. 北京: 化学工业出版社, 2004.
    [55] And X F, Huang R Y M. Liquid Separation by Membrane Pervaporation: A review[J]. Ind Eng Chem Res, 1997, 36(4): 1048-1066.
    [56] Smitha B, Suhanya D. Separation of organic-organic mixtures by pervaporation - A review[J]. J Membr Sci, 2004, 241(1): 1-21.
    [57] Dutta B K, Ji W, Sikdar S K. Pervaporation: Principles and Applications[J]. Sep Purif Rev, 1996, 25(2): 131-224.
    [58] Diban N, Aguayo A T, Bilbao J, et al. Membrane reactors for in situ water removal: A review of applications[J]. Ind Eng Chem Res, 2013, 52(31): 10342-10354.
    [59] Peters T A, Fontalvo J, Vorstman M a G, et al. Design directions for composite catalytic hollow fibre membranes for condensation reactions[J]. Chem Eng Res Des, 2004, 82(2): 220-228.
    [60] Yang Y, Li J, Wang H, et al. An electrocatalytic membrane reactor with self-cleaning function for industrial wastewater treatment[J]. Angew Chem, 2011, 50(9):2148.
    [61] Hong W, Guan Q, Li J, et al. Phenolic wastewater treatment by an electrocatalytic membrane reactor[J]. Catal Today, 2014, 236(18): 121-126.
    [62] Wang H, Wang H, Li J, et al. An electrocatalytic reactor for the high selectivity production of sodium 2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1-propanol[J]. Electrochim Acta, 2014, 123(10): 33-41.
    [63] Mendes D, Mendes A, Madeira L M, et al. The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors - a review[J]. Asia-Pacific J Chem Eng, 2010, 5(1): 111-137.
    [64] Basile A, Paturzo L. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas[J]. Catal Today, 2001, 67(1/3): 55-64.
    [65] Gobina E, Hughes R. Ethane dehydrogenation using a high-temperature catalytic membrane reactor[J]. J Membr Sci, 1994, 90(1/2): 11-19.
    [66] 朱琳琳, 桂建舟, 鲁辉. 钯膜及其在涉氢反应中的应用研究进展[J]. 工业催化, 2012, 20(10): 8-13.
    [67] Farsi M, Khademi M H, Jahanmiri A, et al. Optimal conditions for hydrogen production from coupling of dimethyl ether and benzene synthesis[J]. Int J Hydrogen Energy, 2011, 36(1): 299-310.
    [68] Rahimpour M R, Baktash M S, Vaferi B, et al. Reduction in CO emissions along a two-stage hydrogen-permselective membrane reactor in methanol synthesis process[J]. J Ind Eng Chem, 2011, 17(2): 198-207.
    [69] Sato K, Hanaoka T A, Hamakawa S, et al. Structural changes of a Pd-based membrane during direct hydroxylation of benzene to phenol[J]. Catal Today, 2006, 118(1): 57-62.
    [70] 朱雪峰, 杨维慎. 混合导体透氧膜反应器[J]. 催化学报, 2009, 30(8): 801-816.
    [71] Gellings P J, Bouwmeester H J M. CRC handbook of solid state electrochemistry[M]//Boca Raton: CRC Press,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700