Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm_2NiMnO_6
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm_2NiMnO_6
  • 作者:Rutuparna ; DAS ; R.N.P.CHOUDHARY
  • 英文作者:Rutuparna DAS;R.N.P.CHOUDHARY;Department of Physics, Siksha ‘O' Anusandhan University;
  • 英文关键词:solid-state reaction;;X-ray diffraction(XRD);;dielectric relaxation;;magneto-electric(ME) coupling
  • 中文刊名:JOAC
  • 英文刊名:先进陶瓷(英文)
  • 机构:Department of Physics, Siksha ‘O' Anusandhan University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Advanced Ceramics
  • 年:2019
  • 期:v.8
  • 语种:英文;
  • 页:JOAC201902002
  • 页数:12
  • CN:02
  • ISSN:10-1154/TQ
  • 分类号:24-35
摘要
The polycrystalline sample of a double perovskite, Sm_2NiMnO_6 was synthesized by a solid-state reaction route. From the X-ray structural study, it is found that the structure of the material is monoclinic with lattice parameters: a = 4.1750(63) ?, b = 7.6113(63) ?, c = 5.9896(63) ?, and β = 112.70°. These parameters are very close to and consistent with those of such type of materials. The dielectric, impedance, AC conductivity, and electrical modulus properties of the sample were studied in the temperature range of 25–300℃ and the frequency range of 1 kHz–1 MHz. Typical relaxor behavior observed in the dielectric studies was confirmed by Vogel–Fulcher fitting. From the Nyquist plots, the temperature dependent contribution of grain and grain boundary effect was confirmed. The non-Debye type of relaxation was found using the complex impedance spectroscopy. The magnetic study revealed that the sample had paramagnetic behavior at room temperature. Magneto-electric(ME) coefficient was obtained by changing DC bias magnetic field. This type of lead-free relaxor ferroelectric compound may be useful for high-temperature applications.
        The polycrystalline sample of a double perovskite, Sm_2NiMnO_6 was synthesized by a solid-state reaction route. From the X-ray structural study, it is found that the structure of the material is monoclinic with lattice parameters: a = 4.1750(63) ?, b = 7.6113(63) ?, c = 5.9896(63) ?, and β = 112.70°. These parameters are very close to and consistent with those of such type of materials. The dielectric, impedance, AC conductivity, and electrical modulus properties of the sample were studied in the temperature range of 25–300℃ and the frequency range of 1 kHz–1 MHz. Typical relaxor behavior observed in the dielectric studies was confirmed by Vogel–Fulcher fitting. From the Nyquist plots, the temperature dependent contribution of grain and grain boundary effect was confirmed. The non-Debye type of relaxation was found using the complex impedance spectroscopy. The magnetic study revealed that the sample had paramagnetic behavior at room temperature. Magneto-electric(ME) coefficient was obtained by changing DC bias magnetic field. This type of lead-free relaxor ferroelectric compound may be useful for high-temperature applications.
引文
[1]Sahoo S,Mahapatra PK,Choudhary RNP.The structural,electrical and magnetoelectric properties of soft-chemicallysynthesize SmFeO3 ceramics.J Phys D:Appl Phys 2016,49:035302.
    [2]Parida K,Dehury SK,Choudhary RNP.Structural,electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics.Phys Lett A 2016,380:4083-4091.
    [3]Ortega N,Kumar A,Scott JF,et al.Multifunctional magnetoelectric materials for device applications.J Phys:Condens Matter,2015,27:504002.
    [4]Singh DN,Sinha TP,Mahato DK.Structural and dielectric characteristics of La2Cu Mn O6 double perovskite ceramics.Mater Today-Proc 2017,4:5640-5646.
    [5]Bartesaghi D,Slavney AH,Gélvez-Rueda MC,et al.Charge carrier dynamics in Cs2 Ag Bi Br6 double perovskite.J Phys Chem C 2018,122:4809-4816.
    [6]Gheorghiu F,Curecheriu L,Lisiecki I,et al.Functional properties of Sm2Ni Mn O6 multiferroic ceramics prepared by spark plasma sintering.J Alloys Compd 2015,649:151.
    [7]Reshak AH,Azam S.Electronic band structure and specific features of Sm2Ni Mn O6 compound:DFT calculation.J Magn Magn Mater 2013,342:80.
    [8]Blasse G.Ferromagnetic interactions in non-metallic perovskites.J Phys Chem Solids 1965,26:1969-1971.
    [9]Khandy SA,Gupta DC.Electronic structure,magnetism and thermoelectric properties of double perovskite Sr2Ho Nb O6.J Magn Magn Mater 2018,458:176-182.
    [10]Khandy SA,Gupta DC.Electronic structure,magnetism and thermoelectricity-in layered perovskites:Sr2Sn Mn O6and Sr2Sn FeO6.J Magn Magn Mater 2017,441:166-173.
    [11]Fan HQ,Ke SM.Relaxor behavior and electrical properties of high dielectric constant materials.S Sci China Ser E-Technol Sci 2009,52:2180-2185.
    [12]Cross LE.Relaxor ferroelectrics.Ferroelectrics 1987,76:241-267.
    [13]Parida B N,Panda N,Padhee R,et al.Dielectric relaxation and impedance analysis of ferroelectric double perovskite Pb2Bi Nb O6.J Mater Sci:Mater Electron 2017,28:1824-1831.
    [14]Lekshmi P,Raji GR,Vasundhara M,et al.Re-entrant spin glass behaviour and magneto-dielectric effect in insulating Sm2Ni MnO6 double perovskite.J Mater Chem C 2013,1:6565-6574.
    [15]Shi C Y,Hao Y M,Hu ZB.Local valence and physical properties of double perovskite Nd2Ni Mn O6.J Phys D:Appl Phys 2011,44:245405.
    [16]Bokov AA,Ye ZG.Dielectric relaxation in relaxor ferroelectrics.J Adv Dielect 2012,2:1241010.
    [17]Burns G,Dacol FH.Crystalline ferroelectrics with glassy polarization behaviour.Phys Rev B 1983,28:2527.
    [18]Glazounov AE,Tagantsev AK.Direct evidence for Vogel-Fulcher freezing in relaxor ferroelectrics.Appl Phys Lett 1998,73:856.
    [19]Vugmeister BE,Glinichuk MD.Dipole glass and ferroelectricity in random-site electric dipole systems.Rev Mod Phys 1990,62:993-1026.
    [20]Sliwinska-Bartkowiak M,Dudziak G,Sikorski R,et al.Dielectric studies of freezing behavior in porous materials:water and methanol in activated carbon fibres.Phys Chem Chem Phys 2001,3:1179-1184.
    [21]Du HL,Zhou WC,Luo F,et al.Phase structure,dielectric properties,and relaxor behavior of(K0.5Na0.5)Nb O3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications.J Appl Phys2009,105:124104.
    [22]Ranjan R,Kumar R,Kumar N,et al.Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1-x/4O3 ceramics.J Alloys Compd 2011,509:6388-6394.
    [23]Paiva DVM,Silva MAS,Sombra ASB,et al.Dielectric investigation of the Sr3WO6 double perovskite at RF/microwave frequencies.RSC Adv 2016,6:42502-42509.
    [24]Mahato DK,Dutta A,Sinha TP.Impedance spectroscopy analysis of double perovskite Ho2NiTiO6.J Mater Sci 2010,45:6757-6762.
    [25]Parida K,Dehury SK,Choudhary RNP.Structural,electrical and magneto-electric characteristics of complex multiferroic perovskite Bi0.5Pb0.5Fe0.5Ce0.5O3.Journal Mate Sci:Mater Electron,2016,27:11211-11219.
    [26]Pradhan D K,Choudhary R N P,Rinaldi C,et al.Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3.J Appl Phys 2009,106:024102.
    [27]Parida BN,Das PR,Padhee R,et al.A new ferroelectric oxide Li2Pb2Pr2W2Ti4Nb4O30:Synthesis and characterization.J Phys Chem Solids 2012,73:713-719.
    [28]Barick BK,Choudhary RNP,Pradhan DK.Dielectric and impedance spectroscopy of zirconium modified(Na0.5Bi0.5)TiO3 ceramics.Ceram Int 2013,39:5695-5704.
    [29]Pattanayak S,Parida BN,Das PR,et al.Impedance spectroscopy of Gd-doped BiFeO3 multiferroics.Appl Phys A 2013,112:387-395.
    [30]Gupta P,Padhee R,Mahapatra P K,et al.Structural,dielectric,impedance and modulus spectroscopy of Bi2Nd TiVO9 ferroelectric ceramics.J Mater Sci:Mater Electron 2017,28:17344-17353.
    [31]Deepti PL,Patri K,Choudhary RNP.Mg Bi2V2O9:Preparation and electrical property evaluation.J Mater Sci:Mater Electron 2017,28:16071-16076.
    [32]Padhee R,Das PR,Parida BN,et al.Structural,dielectric and electrical properties of dysprosium based new complex electroceramics.J Mater Sci:Mater Electron 2012,23:1688-1697.
    [33]Choudhary RNP,Pradhan DK,Tirado CM,et al.Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics.J Mater Sci 2007,42:7423-7432.
    [34]Purohit V,Padhee R,Choudhary RNP.Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic.Ceram Int 2018,44:3993-3999.
    [35]Sutar BC,Pati B,Parida BN,et al.Dielectric and impedance characteristics of Ba(Bi0.5Nb0.5)O3 ceramics.JMater Sci:Mater Electron 2013,24:2043-2051.
    [36]Yang WZ,Liu XQ,Zhao HJ,et al.Structure,magnetic,and dielectric characteristics of Ln2NiMnO6(Ln=Nd and Sm)ceramics.J Appl Phys 2012,112:064104.
    [37]Parida BN,Padhee R,Suara D,et al.Multiferroic and conduction characteristics of(Bi0.5Ba0.5)(Fe0.5Ti0.5)O3 solid solution.J Mater Sci Mater Electron 2016,27:9015-9021.
    [38]Paiva DVM,Silva MAS,Sombra ASB,et al.Properties of the Sr3Mo O6 electroceramic for RF/microwave devices.JAlloys Compd 2018,748:766-773.
    [39]Patri SK,Choudhary RNP.Electrical properties of LaBi8Fe5Ti3O27.J Mater Sci:Mater Electron 2008,19:1240-1246.
    [40]Sinclair DC,West AR.Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance.J Appl Phys 1989,66:3850-3856.
    [41]Kumar N,Patri SK,Choudhary RNP.Characterization of Bi4Pb2Ti3FeNbO18 nanoplates.J Alloys Compd 2014,615:456-460.
    [42]Jonscher AK.Dielectric relaxation in solids.J Phys D:Appl Phys 1999,32:R57-R70.
    [43]Schimd H.Multi-ferroic magnetoelectrics.Ferroelectric1994,162:317-338.
    [44]Martins P,Moya X,Phillips LC,et al.Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene)0-3 nanocomposites.J Phys D:Appl Phys 2011,44:482001.
    [45]Gil K,Gil J,Cruz B,et al.Experimental set up of a magnetoelectric measuring system operating at different temperatures.J Phys Conf Ser 2016,687:01209.
    [46]Shi M,Zuo R,Xun Y,et al.Preparation and multiferroic properties of 2-2 type Co Fe2O4/Pb(Zr,Ti)O3 composite films with different structures.Ceram Int 2014,40:9249-9256.
    [47]Dipti,Juneja JK,Singh S,et al.Enhancement in magnetoelectric coupling in PZT based composites.Ceram Int 2015,41:6108-6112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700