秦巴山区植被覆盖变化及气候因子驱动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains
  • 作者:陈超男 ; 朱连奇 ; 田莉 ; 李新鸽
  • 英文作者:CHEN Chaonan;ZHU Lianqi;TIAN Li;LI Xin′ge;College of Environment and Planning, Henan University;Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences;Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences;
  • 关键词:植被覆盖 ; NDVI ; 时空格局 ; 气候变化 ; 秦巴山区
  • 英文关键词:vegetation cover;;NDVI;;spatial-temporal patterns;;climate change;;Qingling-Daba Mountains
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:河南大学环境与规划学院;中国科学院地理科学与资源研究所;千烟洲生态试验站生态系统网络观测与模拟重点实验室;
  • 出版日期:2019-02-27 08:30
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41671090);; 科技基础资源调查专项(2017FY100902)
  • 语种:中文;
  • 页:STXB201909022
  • 页数:10
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:242-251
摘要
基于GIMMS_(3g)(1982—2015年)、SOPT VEG(1998—2015年)和MODIS(2000—2017年)3种NDVI数据集,结合气温、降水和DEM数据,利用平均法、线性趋势分析法和相关分析法等方法,分析了秦巴山区植被覆盖的时空变化特征及其与气候因子的相关性,并以秦岭山地(陕西境内)为重点区域,分析了植被覆盖的海拔梯度差异及其与气候因子的垂直响应模式。结果表明:①1982—2017年秦巴山区3种植被NDVI均呈显著增加趋势,其中1982—2015年NDVI-GIMMS_(3g)增速为1.4%/10a,1982—2000年NDVI-GIMMS_(3g)较低且波幅较大,增速为1.6%/10a,年际间变异系数(CV)为0.04,2000—2015年NDVI-GIMMS_(3g)较高且稳定增加,增速为1.7%/10a,CV为0.02;2000—2015年NDVI-SPOT VEG增速为4.1%/10a,CV为0.04;2000—2017年NDVI-MODIS年增速为4.5%/10a,CV为0.04;②2000—2017年(MODIS数据)秦巴山区植被覆盖高值区主要为秦岭、米仓山和神农架等山地,低值区主要为西部高海拔区和东部低海拔区等区域;秦岭山地随海拔升高植被NDVI先升高后降低;③2000—2017年(MODIS数据)秦巴山区植被覆盖增加和减少的区域分别占96.90%和3.10%,低海拔地区较高海拔地区变化剧烈;秦岭山地低海拔带植被覆盖较高海拔带增加显著;④2000—2015年(SOPT VEG数据)秦巴山区增温效应显著,增速为0.49℃/10a,植被覆盖与温度以正相关为主,与降水正负相关并存,与温度的相关性较降水的相关性高;秦岭山地高海拔带植被对温度变化更敏感,低海拔带对降水更敏感。
        Vegetation and its characteristics are largely controlled by regional landforms and climate. The Qingling-Daba Mountains are located in a transitional zone between the subtropical and the warm temperate climate in China, where a complex relationship between vegetation and climate exits. To explore this relationship, we used GIMMS_(3 g)(1982—2015), SPOT VEGTATION(SPOT VEG)(1998—2015), and MODIS(2000—2017), the DEM, and climate data(temperature and precipitation) to quantify the spatiotemporal changes in vegetation in the Shaanxi Province of the mountains. We found that:(1) NDVI of the GIMMS_(3 g) database increased significantly at a rate of 1.4%/10 a from 1982 through 2015. For 1982—2000, NDVI of GIMMS_(3 g) was low but highly variable(linear tendency 1.6%/10 a, CV = 0.4) by year, whereas a stable increasing trend appeared after 2000(linear tendency 1.7%/10 a, CV = 0.2). For 2000—2015, the increasing rate was 4.1%/10 a(CV = 0.04) for NDVI of the SPOT VEG database. For 2000—2015, the increasing rate was 4.5%/10 a(CV = 0.04) for NDVI of the MODIS database.(2) High vegetation coverage was found from MODIS for 2000—2017, primarily in the mountainous regions(e.g., Qinling Mountains, Micang Mountains, and Shennongjia), whereas low cover was detected at high altitudes in the west and low altitudes in the east. For the Qinling Mountains, NDVI increased and decreased with elevation.(3) The increase and decrease of vegetation coverage during 2000—2017 accounted for 96.90% and 3.10% of the total land area, respectively. Meanwhile, the vegetation cover at low altitude appeared more protected than that in the high-altitude areas.(4) Annual mean temperature in the study area increased by 0.49℃/10 a during 1982—2015, whereas the precipitation showed no significant change. For 2000—2015, we found that vegetation cover(based on SPOT VEG and climate data) was positively correlated with temperature, but not with precipitation. The correlation analysis further demonstrated that vegetation cover was more strongly correlated with temperature in the Qingling-Daba Mountains. In the Qinling Mountains, the correlation was significant between NDVI and temperature in the high-altitude areas, and between NDVI and precipitation in low-altitude areas.
引文
[1] Braswell B H,Schimel D S,Linder E,Moore III B.The response of global terrestrial ecosystems to interannual temperature variability.Science,1997,278(5339):870- 873.
    [2] Buitenwerf R,Rose L,Higgins S I.Three decades of multi-dimensional change in global leaf phenology.Nature Climate Change,2015,5(4):364- 368.
    [3] Verbeeck H,Kearsley E.The importance of including lianas in global vegetation models.Proceedings of the National Academy of Sciences of the United States of America,2016,113(1):E4-E4.
    [4] 袁丽华,蒋卫国,申文明,刘颖慧,王文杰,陶亮亮,郑华,刘孝富.2000- 2010年黄河流域植被覆盖的时空变化.生态学报,2013,33(24):7798- 7806.
    [5] 王永财,孙艳玲,王中良.1998- 2011年海河流域植被覆盖变化及气候因子驱动分析.资源科学,2014,36(3):594- 602.
    [6] 于泉洲,梁春玲,张祖陆.近40年来南四湖湿地NDVI变化特征及其控制因子分析.湖泊科学,2014,26(3):455- 463.
    [7] Nemani R R,Keeling C D,Hashimoto H,Jolly W M,Piper S C,Tucker C J,Myneni R B,Running S W.Climate-driven increases in global terrestrial net primary production from 1982 to 1999.Science,2003,300(5625):1560- 1563.
    [8] Eckert S,Husler F,Liniger H,Hodel E.Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia.Journal of Arid Environments,2015,113:16- 28.
    [9] Gehrig-Fasel J,Guisan A,Zimmermann N E.Tree line shifts in the Swiss Alps:climate change or land abandonment?Journal of Vegetation Science,2007,18(4):571- 582.
    [10] Mancino G,Nolè A,Ripullone F,Ferrara A.Landsat TM imagery and NDVI differencing to detect vegetation change:assessing natural forest expansion in Basilicata,southern Italy.iForest - Biogeosciences and Forestry,2014,7(2):75- 84.
    [11] 信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响.中国科学 D辑:地球科学,2007,37(11):1504- 1514.
    [12] IPCC(Intergovernmental Panel on Climate Change).Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2007.
    [13] IPCC(Intergovernmental Panel on Climate Change).Climate Change 2014:Impacts,Adaptation,and Vulnerability.Global and sectoral aspects.contribution of working group II to the fifth assessment report of the intergovernmental panelon climate change.UK:Cambridge University Press,2014.
    [14] 张晓东,朱文博,崔耀平,张静静,朱连奇.伏牛山地区森林植被动态变化对水热条件的响应.地理研究,2016,35(6):1029- 1040.
    [15] 方精云.探索中国山地植物多样性的分布规律.生物多样性,2004,12(1):1- 4.
    [16] 王根绪,刘国华,沈泽昊,王文志.山地景观生态学研究进展.生态学报,2017,37(12):3967- 3981.
    [17] 孙华,白红英,张清雨,雒新萍,张善红.基于SPOT VEGETATION的秦岭南坡近10年来植被覆盖变化及其对温度的响应.环境科学学报,2010,30(3):649- 654.
    [18] 贺映娜,白红英,高翔,马新萍.基于NDVI的米仓山植被覆盖变化趋势分析.西北植物学报,2011,31(8):1677- 1682.
    [19] 任园园,张哲,侯钦磊,贺映娜,袁博.大巴山地区植被覆盖变化及其对气候变化的响应.水土保持通报,2012,32(2):56- 59.
    [20] 雒新萍.近25a来秦巴山区植被NDVI时空变化及其对区域气候的响应[D].西安:西北大学,2009.
    [21] 刘宪锋,潘耀忠,朱秀芳,李双双.2000- 2014年秦巴山区植被覆盖时空变化特征及其归因.地理学报,2015,70(5):705- 716.
    [22] 崔晓临,白红英,尚小清.基于MODIS NDVI的秦岭地区植被覆盖变化研究.西北大学学报:自然科学版,2012,42(6):1021- 1026.
    [23] 崔晓临,白红英,王涛.秦岭地区植被NDVI海拔梯度差异及其气温响应.资源科学,2013,35(3):618- 626.
    [24] 邓晨晖,白红英,高山,刘荣娟,马新萍,黄晓月,孟清.秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应.自然资源学报,2018,33(3):425- 438.
    [25] 张清雨,白红英,孙华,高翔,雒新萍.近30年秦岭山地商洛段林地类型时空变化及其驱动力.环境科学学报,2010,30(2):424- 430.
    [26] 任志远,李晶.陕南秦巴山区植被生态功能的价值测评.地理学报,2003,58(4):503- 511.
    [27] 孙华,白红英,张清雨,雒新萍,张善红.秦岭南北地区植被覆盖对区域环境变化的响应.环境科学学报,2009,29(12):2635- 2641.
    [28] 贺添,邵全琴.基于MOD16产品的我国2001- 2010年蒸散发时空格局变化分析.地球信息科学学报,2014,16(6):979- 988.
    [29] 张百平,周成虎,陈述彭.中国山地垂直带信息图谱的探讨.地理学报,2003,58(2):163- 171.
    [30] 周自翔,任志远,李晶.秦巴山区植被土壤保持生态价值研究.干旱区研究,2006,23(1):144- 148.
    [31] Lovell J L,Graetz R D.Filtering pathfinder AVHRR land NDVI data for Australia.International Journal of Remote Sensing,2001,22(13):2649- 2654.
    [32] 孙建,程根伟.山地垂直带谱研究评述.生态环境学报,2014,23(9):1544- 1550.
    [33] He X J,Hou E Q,Liu Y,Wen D Z.Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China.Scientific Reports,2016,6:24261.
    [34] K?rner C.The use of ′altitude′ in ecological research.Trends in Ecology & Evolution,2007,22(11):569- 574.
    [35] 张静静,朱文博,赵芳,朱连奇,李茂娟,朱明,张晓东.山地平原过渡带地形起伏特征及其对景观格局的影响——以太行山淇河流域为例.中国科学:地球科学,2018,48(4):476- 486.
    [36] 余显芳.秦岭山地自然地理.华南师范学院学报,1958,(1):157- 175,177- 178.
    [37] 何家理,马治虎,陈绪敖.秦巴山区退耕还林生态效益外显与经济效益内隐状况调查.水土保持通报,2012,32(4):251- 254,260- 260.
    [38] 刘华训.我国山地植被的垂直分布规律.地理学报,1981,36(3):267- 279.
    [39] 刘亚兰,郭汝清,孙书存.中国亚热带山地植被垂直带分布对气候季节性的响应.生态学报,2010,30(14):3912- 3922.
    [40] 杨胜天,周旭,刘晓燕,刘昌明,罗娅,吴琳娜,赵海根.黄河中游多沙粗沙区(渭河段)土地利用对植被盖度的影响.地理学报,2014,69(1):31- 41.
    [41] 周锡饮,师华定,王秀茹.气候变化和人类活动对蒙古高原植被覆盖变化的影响.干旱区研究,2014,31(4):604- 610.
    [42] 彭舜磊,王得祥.秦岭主要森林类型近自然度评价.林业科学,2011,47(1):135- 142.
    [43] 王强,张勃,张志强,张喜风,戴声佩.基于GIMMS AVHRR NDVI数据的三北防护林工程区植被覆盖动态变化与影响因子分析研究(英文).资源与生态学报,2014,5(1):53- 59.
    [44] 赵舒怡,宫兆宁,刘旭颖.2001- 2013年华北地区植被覆盖度与干旱条件的相关分析.地理学报,2015,70(5):717- 729.
    [45] 穆少杰,李建龙,陈奕兆,刚成诚,周伟,居为民.2001- 2010年内蒙古植被覆盖度时空变化特征.地理学报,2012,67(9):1255- 1268.
    [46] 张含玉,方怒放,史志华.黄土高原植被覆盖时空变化及其对气候因子的响应.生态学报,2016,36(13):3960- 3968.
    [47] Bao Y J,Song G B,Li Z H,Gao J X,Lü H Y,Wang H M,Cheng Y,Xu T.Study on the spatial differences and its time lag effect on climatic factors of the vegetation in the Longitudinal Range-Gorge Region.Chinese Science Bulletin,2007,52(S2):42- 49.
    [48] 孙晓鹏,王天明,寇晓军,葛剑平.黄土高原泾河流域长时间序列的归一化植被指数动态变化及其驱动因素分析.植物生态学报,2012,36(6):511- 521.
    [49] 宋乃平,杜灵通,王磊.盐池县2000—2012年植被变化及其驱动力.生态学报,2015,35(22):7377- 7386.
    [50] 严恩萍,林辉,党永峰,夏朝宗.2000—2012年京津风沙源治理区植被覆盖时空演变特征.生态学报,2014,34(17):5007- 5020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700