雷击输电线路杆塔接地装置周边地中散流分布特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution Characteristic of Ground Dispersed Current Surrounding Tower Grounding Device Under Lightning Transmission Lines
  • 作者:陈邦发 ; 陈斯翔 ; 詹清华 ; 李恒真 ; 吴江一
  • 英文作者:CHEN Bangfa;CHEN Sixiang;ZHAN Qinghua;LI Hengzhen;WU Jiangyi;Foshan Power Supply Bureau of Guangdong Power Grid Co., Ltd.;
  • 关键词:雷击 ; 接地装置 ; 地中散流特性 ; 电流密度 ; 模拟实验
  • 英文关键词:lightning;;grounding device;;ground dispersed current characteristic;;current density;;simulated experiment
  • 中文刊名:GDDL
  • 英文刊名:Guangdong Electric Power
  • 机构:广东电网有限责任公司佛山供电局;
  • 出版日期:2019-03-26 16:10
  • 出版单位:广东电力
  • 年:2019
  • 期:v.32;No.254
  • 基金:广东电网有限责任公司科技项目(GDKJXM20162390)
  • 语种:中文;
  • 页:GDDL201903021
  • 页数:7
  • CN:03
  • ISSN:44-1420/TM
  • 分类号:129-135
摘要
为了研究输电线路杆塔接地装置周边雷电散流特性,建立了典型杆塔接地装置地中散流模型,并搭建模拟雷电流发生装置和地中散流测量系统的现场实验平台,对杆塔接地装置周边地中散流进行测量,结合模拟实验和仿真数据,分析接地装置结构对地中散流特性的影响。结果表明:地中散流测量系统现场实验平台可以准确测量地中散流密度,且模拟实验数据与仿真结果一致;电流密度在距接地极3~5 m处下降约50%,距接地极7~8 m处下降约75%,距接地极10 m处下降约90%;接地装置附近的地中散流密度随水平接地极的延长而减小,且距离接地装置越近变化趋势越明显,在7 m外散流密度不再受水平接地极长度影响。
        To study characteristic of lightning dispersed currentsurrounding the tower grounding device of transmission lines, a typical model of ground dispersed current was built and a field experiment platform for simulating lightning current generating device and the ground dispersed current measurement system was established. By measuring ground dispersed low surrounding the tower grounding device and combining simulated experimental data, effect of the structure of the grounding device on characteristic of ground dispersed current was analyzed. The result indicates the field experiment platform for ground dispersed current measurement system can correctly measure ground dispersed current density and the simulated experimental data is in accordance with the result of simulation. In addition, current density has reduced by about 50%, 75% and 90% respectively away from the grounding electrode 3~5 m, 7~8 m and 10 m respectively. Meanwhile, ground dispersed current density surrounding the grounding device decreases with extension of the horizontal grounding electrode, and the variation trend is more evident as it is more closer to the grounding device. Disperse current density is no longer affected by length of the horizontal grounding electrode 7 m away from the grounding electrode.
引文
[1] MOHAMAD NOR N, HADDAD A, GRIFFITHS H. Factors affecting soil characteristics under fast transients[C]//International Conference on Power Systems Transients-IPST 2003,New Orleans, USA:[s.n.],2003.
    [2] MOUSA A M. Soil ionization gradient associated with discharge of high currents into concentrated electrodes[J]. IEEE Transactions on Power Delivery, 1994, 9(3):1669-1677.
    [3] 周利军,高峰,李瑞芳,等.高速铁路牵引供电系统雷电防护体系[J]. 高电压技术,2013,39(2):399-406. ZHOU Lijun, GAO Feng, LI Ruifang, et al. Lighting protection system of traction power supply system for high-speed railway[J]. High Voltage Engineering, 2013, 39(2): 399-406.
    [4] PATRICK E, DIAZ R R, BONAMY A, et al. Electrical parameters associated with discharges in resistive soils[J]. IEEE Transactions on Power Delivery, 2004,19(3):1174-1182.
    [5] 高延庆. 土壤冲击击穿机理及接地系统暂态特性研究[D]. 北京:清华大学,2003.
    [6] 何金良,曾嵘. 电力系统接地技术[M]. 北京:科学出版社,2009.
    [7] 高延庆,何金良,曾嵘,等.非均匀土壤中变电所接地网优化设计[J]. 清华大学学报(自然科学版),2002,42(3):345-348. GAO Yanqing, HE Jinliang, ZENG Rong, et al. Optimal design of grounding grids of substations in non-uniform soils[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(3): 345-348.
    [8] 李景丽,袁涛,杨庆, 等. 考虑土壤电离动态过程的接地体有限元模型[J]. 中国电机工程学报,2011,31(22): 149-157. LI Jingli, YUAN Tao, YANG Qing, et al. Finite element model of grounding system considering soil dynamic ionization[J]. Proceedings of the CSEE, 2011, 31(22): 149-157.
    [9] 李景丽,乔志远,武东亚, 等. 考虑土壤频变特性的接地系统有限元模型[J]. 电瓷避雷器,2015(5): 100-110. LI Jingli, QIAO Zhiyuan, WU Dongya, et al. The FEM model of grounding system considering soil frequency-dependence[J]. Insulators and Surge Arresters, 2015(5): 100-110.
    [10] 黄志都,邓雨荣,吴彪, 等. 110 kV绝缘杆塔输电线路雷电入侵波过电压研究[J]. 南方电网技术,2017,11(1):45-51. HUANG Zhidu, DENG Yurong, WU Biao, et al. Research on lightning intruding wave overvoltage of 110 kV insulated tower transmission line[J]. China Southern Power Grid Technology, 2017, 11(1): 45-51.
    [11] 蔡昊晖,苏杰,任华,等. 基于雷电冲击特性的同塔多回输电线路并联间隙配置[J]. 南方电网技术,2016,10(2):32-37. CAI Haohui, SU Jie, REN Hua, et al. Parallel gaps configuration for multi-circuit transmission line on the same tower based on lighting impulse characteristics[J]. 2016,10(2):32-37.
    [12] 齐国强,王增平,裘愉涛,等. 基于信号复杂度衰减的特高压直流输电线路雷电暂态识别方法[J]. 电力系统保护与控制,2018,46(17): 1-8. QI Guoqiang, WANG Zengping, QIU Yutao, et al. Lightning transient identification method for UHVDC transmission line based on signal complexity attenuation[J]. Power System Protection and Control, 2018, 46(17): 1-8.
    [13] OETTLE E E. Characteristics of electrical breakdown and ionization processes in soil[J]. Transactions of the South African Institute of Electrical Engineers, 1998, 12(a):63-70.
    [14] 刘文军,仇彦军,孙立臣. 500 kV输电线路杆塔接地网不同环境下优化降阻方案研究[J]. 电力系统保护与控制,2018,46(13): 98-106. LIU Wenjun, QIU Yanjun, SUN Lichen. Research on optimized drag reduction scheme for different grounding grids of 500 kV transmission lines[J]. Power System Protection and Control,2018,46(13): 98-106.
    [15] CIGRE Working Group on Lightning. Guide to procedures for estimation the lightning performance of transmission lines[G]. Paris, France: CIGRE,1991.
    [16] 杨财伟. 接地装置冲击特性的模拟试验及有限元分析方法研究[D]. 重庆:重庆大学,2010.
    [17] MADANI M R, MILLER T A . Current density distribution measurement of negative point-to-plane corona discharge[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(4):907-913.项目简介:申请单位广东电网有限责任公司佛山供电局项目名称输电线路接地装置的雷电冲击接地电阻特性及防护技术项目概述搭建了模拟雷电流发生装置及地中冲击接地电阻测量系统,测量了杆塔接地装置冲击特性;研究了冲击接地电阻的可靠防护方法。主要创新点搭建了模拟雷电流发生装置,研究了接地装置冲击接地电阻特性和防护的技术,并研发了冲击接地电阻测评软件,可有效实现冲击接地防护及相关方案研制。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700