雷电过电压作用下配电网电涌保护器配合保护失效概率分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of the Failure Probability of Coordinated SPDs in the Distribution Network due to Lightning Overvoltage
  • 作者:李文君 ; 李鹏飞 ; 李传荣
  • 英文作者:LI Wenjun;LI Pengfei;LI Chuanrong;College of Engineering and Technology Southwest University;State Grid Shandong Electric Power Company;Shandong Taikai Power Engineering Co.,Ltd.;
  • 关键词:电涌保护器 ; 雷电过电压 ; 配合 ; 压敏电阻片 ; 失效概率 ; 通流容量
  • 英文关键词:SPD;;lightning overvoltage;;coordination;;ZnO varistor;;failure probability;;current capacity
  • 中文刊名:DCPQ
  • 英文刊名:Insulators and Surge Arresters
  • 机构:西南大学工程技术学院;国网山东省电力公司;山东泰开电力建设工程有限公司;
  • 出版日期:2019-04-25
  • 出版单位:电瓷避雷器
  • 年:2019
  • 期:No.288
  • 语种:中文;
  • 页:DCPQ201902028
  • 页数:5
  • CN:02
  • ISSN:61-1129/TM
  • 分类号:169-173
摘要
为了有效利用电涌保护器进行雷电防护,需要对雷电过电压作用下配电网SPD配合保护进行分析。本文利用EMTP软件搭建简化配电系统模型对IEEE标准推荐压敏电阻片模型进行仿真冲击,通过累积能量计算前后级SPD失效概率以及整体配合失效概率,计算前后级SPD残压与分流,讨论雷电流的波尾时间、前后级SPD连接电缆长度、通流容量对配合失效概率的影响。研究结果表明:SPD两级高低配合方式下,终端用电设备过电压得到了有效的抑制;前级SPD承受大部分雷电流和能量;前后级SPD失效概率及整体配合失效概率均随着雷电流波尾时间的增大而增加;整体配合失效概率和前级SPD失效概率随着连接电缆长度的增长而增加,后级SPD失效概率随着连接电缆长度的增长而降低。SPD通流容量对失效概率有一定影响,通流容量越大,整体配合失效概率越低。应选用通流容量较大的SPD作为前端防护器件。
        In order to protect against lightning by use of surge protective device(SPD) properly,studying coordination of SPDs in the distribution network under the real lightning surge is necessary. A simplified model of distribution power system was established in EMTP and the ZnO varistor model recommended by IEEE standard was also applied. Residual voltages and currents of pre and post SPD were analyzed while energy absorbed was also calculated. Effect of tail time of lightning current,length of connecting cable and current capacity of on failure probabilities of SPDs were discussed in terms of energy. Research results show that: the high-low coordination mode of SPDs leads to good coordination effect and most of the energy and current were accepted by the pre-stage SPD. Failure probabilities of SPDs increase with the increasing of tail time of lightning current. Failure probabilities of the pre SPD increases with the increasing of length of cable while that of post SPD is opposite. The overall failure probability of coordination system depends on current capacity of SPD,so it is feasible to select SPD which has large current capacity as the front protection device.
引文
[1]吴广宁,曹晓斌,李瑞芳.过电压防护的理论与技术[M].北京:中国电力出版社,2015.
    [2]李祥超.电涌保护器(SPD)原理与应用[M].北京:气象出版社,2011.
    [3]何金良,曾嵘.配电线路雷电防护[M].北京:清华大学出版社,2013.
    [4]杜志航,杨仲江,姜山,等.基于限压型电涌保护器能量配合的分析[J].电瓷避雷器,2009(5):46-49.DUZhihang,YANG Zhongjiang,JIANG Shan,et al. Analyse on energy coordination between based on voltage limiting SPD[J]. Insulators and Surge Arresters,2009(5):46-49.
    [5]张栋,傅正财,赵刚,等.低压配电系统中浪涌保护器配合机理[J].电工技术学报,2009,24(7):145-149.ZHANG Dong,FUZhengcai,ZHAO Gang,et al. The coordination mechanism of cascaded SPDs in low voltage distribution systems[J]. Transactions of China Electrotechnical Society,2009,24(7):145-149.
    [6]李丽荣,孔维功,李立君.标准振荡波作用下负载性质对电涌保护器防护影响的研究[J].电瓷避雷器,2018(2):39-43.LILirong,KONG Weigong,LI Lijun. Study of the influence of the load properties under standard oscillating wave on SPD protection[J]. Insulators and Surge Arresters,2018(2):39-43.
    [7] LI M,YUAN J,ZHAO Z. Low-voltage SPD coordination analysis[C]. 2011 Asia-Pacific International Conference on Lightning. Chengdu,2011:913-916.
    [8] Low-voltage surge protective part 1:surge protective devices connected to low-voltage power distribution systemsrequirements and tests:61643-1 I[S]. 2005.
    [9]姜辉,刘全桢,刘宝全,等.低压配电系统电涌保护器能量配合研究[J].电瓷避雷器,2013(3):137-142.JIANGHui,LIU Quanzhen,LIU Baoquan,et al. Research on energy coordination of SPD in low-voltage distribution system[J]. Insulators and Surge Arresters,2013(3):137-142.
    [10]张义军,吕伟涛,郑栋,等.负地闪先导-回击过程的光学观测和分析[J].高电压技术,2008,34(10):2022-2029.ZHANGYijun,LV Weitao,ZHENG Dong,et al. Optical observations and analysis of leader-return stroke processes involved in negative cloud-to-ground lightning flashes[J]. High Voltage Engineering,2008,34(10):2022-2029.
    [11] IEC 62305-1 Ed1. Protection against lightning part 1:general principles[S]. 2008.
    [12]吴文辉,曹祥麟.电力系统电磁暂态计算与EMTP应用[M].北京:中国水利水电出版社,2012.
    [13] IEEE Std. IEEE guide for improving the lightning performance of electric power overhead distribution lines:1410—2010[S].
    [14] HIDAKA T,ISHIMOTO K,ASAKAWA A,et al. Relationship between grounding resistance connected to surge arresters and lightning surge behavior observed in lowvoltage equipment[C]. 2013 International Symposium on Lightning Protection(XII SIPDA).[S. l.]:[s. n.],2013:214-219.
    [15] YU H Q,CHEN S M,YANG P C. Study on lightning protection of cables and transformer in Microgrid[C]//China International Conference on Electricity Distribution,Nanjing,China,2011:1-5.
    [16] IEEE working group 3. 4. 11. Modeling of metal oxide surge arresters[J]. IEEE Transactions on Power Delivery,1995,10(2):393-397.
    [17]王荣珠,张云峰,陈则煌,等.基于ATP-EMTP仿真软件的MOV仿真模型的分析[J].电瓷避雷器,2014(5):66-70.WANGRongzhu,ZHANG Yunfeng,CHEN Zehuang,et al. Analysis of MOV simulation model based on ATPEMTP[J]. Insulators and Surge Arresters,2014(5):66-70.
    [18] SHARIATINASAB R,AJRI F,DAMAN-KHORSHID H. Probabilistic evaluation of failure risk of transmission line surge arresters caused by lightning flash[J]. IET Generation Transmission&Distribution,2014,8(2):193-202.
    [19] SHIN H K,KIM D S,CHUNG Y K,et al. Energy coordination of Zn O varistor based SPDs in surge current due to direct lightning flashes[C]. 2014 International Conference on Lightning Protection(ICLP).[S. l.]:[s. n.],2014:136-140.
    [20] LO PIPARO G B,KISIELEWICZ T,MAZZETTI C,et al. An approach to assess the probability of damage when a coordinated SPD system is installed[C]. 2014 International Conference on Lightning Protection(ICLP),2014:702-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700