500 MPa级Nb-Ti微合金化方矩形管用钢的强化机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strengthening mechanism of 500 MPa grade Nb-Ti microalloyed square pipe steel
  • 作者:惠亚军 ; 吴科敏 ; 潘辉 ; 陈斌 ; 崔阳 ; 周娜
  • 英文作者:HUI Ya-jun;WU Ke-min;PAN Hui;CHEN Bin;CUI Yang;ZHOU Na;Strip Technology Department,Research Institute of Technology,Shougang Group Corporation;Beijing Key Laboratory of Green Recyclable Process for Iron and Steel Production Technology;Shougang Qian′an Iron and Steel Co.,Ltd.;
  • 关键词:500 ; MPa级 ; Nb-Ti微合金化 ; 方矩形管用钢 ; 强化机制
  • 英文关键词:500 MPa grade;;Nb-Ti microalloyed;;square pipe steel;;strengthening mechanism
  • 中文刊名:ZGYE
  • 英文刊名:China Metallurgy
  • 机构:首钢集团有限公司技术研究院薄板研究所;绿色可循环钢铁流程北京市重点实验室;首钢股份公司迁安钢铁公司;
  • 出版日期:2019-06-15
  • 出版单位:中国冶金
  • 年:2019
  • 期:v.29
  • 语种:中文;
  • 页:ZGYE201906006
  • 页数:8
  • CN:06
  • ISSN:11-3729/TF
  • 分类号:30-37
摘要
采用光学显微镜和透射电子显微镜等对500MPa级Nb-Ti微合金化方矩形管用钢的组织与性能进行了分析,研究了其强化机制。结果表明,终轧温度和卷取温度对试验钢的组织和力学性能有显著影响,在研究的温度范围内,终轧温度和卷取温度的降低均有利于获得更加细小的铁素体晶粒与细小弥散的第二相析出物;当卷取温度不变时,随着终轧温度的下降,屈服强度、抗拉强度和断后伸长率均升高;当终轧温度不变时,随着卷取温度的逐渐下降,屈服强度和抗拉强度呈现出先上升后下降的规律,而断后伸长率呈现出单调上升的规律;试验钢在终轧温度为840℃和卷取温度为570℃时可获得最优的综合力学性能,其屈服强度和抗拉强度分别为537和578MPa,断后伸长率为33.5%;细晶强化是试验钢最主要的强化机制,由晶粒细化引起的强度增量占总强度的49%~51%,由固溶强化引起的强度增量次之,占总强度的23%~27%,由析出强化引起的强度增量较小,仅占总强度的3.8%~8.2%。
        The microstructure,properties and strengthening mechanism of 500 MPa grade Nb-Ti microalloyed square pipe steel were investigated by utilizing the optical microscope(OM)and transmission electron microscopy(TEM).The results showed that the finish rolling temperature(FDT)and the coiling temperature(CT)had considerable influences on the microstructure and mechanical strength.The decrease of the FDT and CT was benefitted to obtain the finer ferrite grain size and finer dispersion of the second phase precipitate in the studied temperature range.The yield strength,tensile strength and elongation rate were increased with the decrease of the FDT when the CT was constant.The yield strength and tensile strength displayed the tendency of declining at the beginning and rising up in late,and the elongation rate was monotonically increased as the CT decreased gradually.The optimal mechanical properties were obtained when the FDT and CT were 840 and 570 ℃,respectively,and the yield strength,tensile strength and elongation rate were 537 MPa,578 MPa and 33.5%.The grain refinement strengthening was the most important strengthening mode,which accounted for 49% to 51% of the yield strength,and the solid solution strengthening was the second main strengthening mode,which accounted for 23%to 27%,while the precipitation strengthening was only accounted for 3.8%to 8.2% of the yield strength.
引文
[1]张鹏程,武会宾,唐荻,等.Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为[J].金属学报,2007,43(7):753.
    [2] Nishio,Shinj.Investigation of cal body structural optimization method[J].International Journal of Vehicle Design,1990,12(1):793.
    [3] Yoshimura,Masatakal,Nishiwaki.A multiple cross-sectional shape optimization method for automotive body flames[J].Journal of Mechanical Design,2005,34(1):494.
    [4] Botkin.Structural optimization of automotive body components based on parametric solid modeling[J].Engineering with Computers,2002,18(2):1095.
    [5] Kang,Choi.Design sensitivity analysis of body structure using skeleton model[C]//Proceedings of the 6th International Pacific Conference on Automotive Engineering.[S.l.]:SAE Korea,1991:1021.
    [6] Shin,Lee,Song,et al.Automotive door design with the ULSAB concept using structural optimization[J].Structural and Multidisciplinary Optimization,2002,20(4):3207.
    [7] CUI Zhong-qi.Metallurgy and Heat Treatment[M].Harbin:Harbin Institute of Technology Press,1996.
    [8] WANG De-ke.Fundamentals of Materials Science[M].Beijing:China Machine Press,2002.
    [9] WANG Xian-jin.Production and Application of Cold-Formed Steel[M].Beijing:Metallurgical Industry Press,1994.
    [10] YANG P J,HAN J T,JIANG Z Y,Jintao H,hengyi J,et al.Study on properties of high strength steel during warm roll forming[J].Advanced Materials Research,2012,27(4):472.
    [11]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [12] Hong S G,Kang K B,Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J].Scripta Mate,2002(2):16313.
    [13] Thillou V.Basic Metal Processing Research Institute Report[D].Pittsburgh:University of Pittsburgh,1997.
    [14]雍岐龙.微合金钢物理和力学冶金[M].北京:机械工业出版社,1989.
    [15] Pickering F B.Physical Metallurgy and the Design of Steels[D].London:Applied Science Publishing Ltd.,1995.
    [16] Thiliou V.Basic Metal Processing Reflect Institute Report[D].Pittsburgh:University of Pittsburgh,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700