热退火气氛对溶液法制备的Sb_2S_3薄膜组成、结构及光伏性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Annealing Atmosphere on Composition,Structure and Photovoltaic Properties of Solution-processed Sb_2S_3 Thin Films
  • 作者:齐娟娟 ; 董超 ; Getinet ; Y.Ashebir ; 陈俊伟 ; 万智阳 ; 陈王伟 ; 赵秋原 ; 王命泰
  • 英文作者:QI Juanjuan;DONG Chao;Getinet Y.Ashebir;CHEN Junwei;WAN Zhiyang;CHEN Wangwei;ZHAO Qiuyuan;WANG Mingtai;Institute of Applied Technology,Hefei Institutes of Physical Science,Chinese Academy of Sciences;Science Island Branch of Graduate School,University of Science and Technology of China;
  • 关键词:三硫化二锑 ; 化学浴沉积 ; 热退火气氛 ; 太阳能电池
  • 英文关键词:Sb2S3;;Chemical bath deposition;;Annealing atmosphere;;Solar cell
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:中国科学院合肥物质科学研究院应用技术研究所;中国科学技术大学研究生院科学岛分院;
  • 出版日期:2019-02-10
  • 出版单位:高等学校化学学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(批准号:11274307,91333121,11474286);; 安徽省科技攻关计划项目(批准号:1604a0902148);; 合肥物质科学技术中心重要/创新项目培育基金(批准号:2016FXZY003)资助~~
  • 语种:中文;
  • 页:GDXH201902019
  • 页数:8
  • CN:02
  • ISSN:22-1131/O6
  • 分类号:150-157
摘要
采用化学浴(CBD)法在TiO_2薄膜表面制备结晶性Sb_2S_3膜层,获得了TiO_2/Sb_2S_3平板异质结,并结合聚[2,6-{4,4-双-(2-乙基己基)-4H-环戊并[2,1-b; 3,4-b']-二噻吩}-交替-4,7-(2,1,3-苯并噻二唑)](PCPDTBT)空穴传输层和MoO_3电极界面修饰层,制备了FTO/TiO_2/Sb_2S_3/PCPDTBT/MoO_3/Au平板结构太阳能电池,研究了CBD方法中热退火气氛对Sb_2S_3薄膜的组成、结构及光伏性能的影响.结果表明,在N2气氛下退火时,所得的Sb_2S_3膜层不致密且含有Sb_2O_3杂相,电池效率仅为0. 90%;而在N2-S气氛下退火时,硫会与杂相Sb_2O_3发生反应生成Sb_2S_3,进而得到纯净、致密、平整的结晶Sb_2S_3膜层.在平板结构太阳能电池中,光生空穴对电池光电流的产生有明显的贡献;随着Sb_2O_3杂相的消除,Sb_2S_3薄膜中载流子的复合减少且传输速率增大,使太阳能电池器件中电子与空穴的收集效率和短路电流显著提高,电池效率提高了1. 34倍,达到2. 04%.
        Chemical bath deposition( CBD) method was used to deposit Sb_2S_3 on condensed TiO_2 film to prepare TiO_2/Sb_2S_3 planar heterojunction,and the FTO/TiO_2/Sb_2S_3/PCPDTBT/MoO_3/Au planar devices were fabricated with poly[2,6-{ 4,4-bis-( 2-ethylhexyl)-4 H-cyclopenta[2,1-b; 3,4-b']-dithiophene}-alt-4,7-( 2,1,3-benzothiadiazole) ]( PCPDTBT) hole transporting layer and MoO_3 interfacial layer to modify Au electrode. The effects of annealing atmospheres on the composition,structure and photovoltaic properties of solution-processed Sb_2S_3 thin films were investigated. The results show that the cell efficiency only reaches0. 90% when the TiO_2/Sb_2S_3 film is annealed in N2 atmosphere due to the presence of Sb_2O_3 secondary phase and a poor compactness in the resulting Sb_2S_3 thin film,while the smooth,well condensed and pure Sb_2S_3 thin film is obtained when annealing the TiO_2/Sb_2S_3 film in N2-S atmosphere,leading to the elimination of Sb_2O_3 secondary phase and a significant increase in efficiency by 1. 34 folds to 2. 04%. It is found that the removal of Sb_2O_3 impurity reduces the charge recombination and facilitates the transport and collection efficiency of both electron and holes in bulk Sb_2S_3 layer,leading to improved device performance.
引文
[1] Rajpure K. Y.,Bhosale C. H.,Mater. Chem. Phys.,2000,63(3),263—269
    [2] Murtaza G.,Akhtar M.,Malik M. A.,O’Brien P.,Revaprasadu N.,Mater. Sci. Semicond. Process,2015,40,643—649
    [3] Versavel M. Y.,Haber J. A.,Thin Solid Films,2007,515(18),7171—7176
    [4] Grozdanov I.,Semicond. Sci. Technol.,1994,9(6),1234—1241
    [5] Ito S.,Tsujimoto K.,Nguyen D. C.,Manabe K.,Nishino H.,Int. J. Hydrogen Energy,2013,38(36),16749—16754
    [6] Kulkarni A. N.,Rajendra Prasad M. B.,Ingle R. V.,Pathan H. M.,Eldesoky G. E.,Naushad M.,Patil R. S.,Opt. Mater.,2015,46,536—541
    [7] Qiu Z.,Liu C.,Pan G.,Meng W.,Yue W.,Chen J.,Zhou X.,Zhang F.,Wang M.,Phys. Chem. Chem. Phys.,2015,17(18),12328—12339
    [8] Shaji S.,Arato A.,O’Brien J. J.,Liu J.,Alan Castillo G.,Mendivil Palma M. I.,Das Roy T. K.,Krishnan B.,J. Phys. D:Appl.Phys.,2010,43(7),075404
    [9] Kim D. H.,Lee S. J.,Park M. S.,Kang J. K.,Heo J. H.,Im S. H.,Sung S. J.,Nanoscale,2014,6(23),14549—14554
    [10] Zhu G.,Huang X.,Hojamberdiev M.,Liu P.,Liu Y.,Tan G.,Zhou J.,J. Mater. Sci.,2011,46(3),700—706
    [11] Zimmermann E.,Pfadler T.,Kalb J.,Dorman J. A.,Sommer D.,Hahn G.,Weickert J.,Schmidt-Mende L.,Adv. Sci.,2015,2(5),1500059
    [12] Choi Y. C.,Lee D. U.,Noh J. H.,Kim E. K.,Seok S. I.,Adv. Funct. Mater.,2014,24(23),3587—3592
    [13] Medina-Montes M. I.,Montiel-Gonzalez Z.,Mathews N. R.,Mathew X.,J. Phys. Chem. Solids,2017,111,182—189
    [14] Weickert J.,Auras F.,Bein T.,Schmidt-Mende L.,J. Phys. Chem. C,2011,115(30),15081—15088
    [15] Maiti N.,Im S. H.,Lim C. S.,Seok S. I.,Dalton Trans.,2012,41(38),11569—11572
    [16] Ye Q.,Xu Y.,Chen W.,Yang S.,Zhu J.,Weng J.,Appl. Surf. Sci.,2018,440,294—299
    [17] Deshmukh L. P.,Holikatti S. G.,Rane B. P.,More B. M.,Hankare P. P.,J. Electrochem. Soc.,1994,141(7),1779—1783
    [18] Prikhodchenko P. V.,Gun J.,Sladkevich S.,Mikhaylov A. A.,Lev O.,Tay Y. Y.,Batabyal S. K.,Yu D. Y. W.,Chem. Mater.,2012,24(24),4750—4757
    [19] Gui E. L.,Kang A. M.,Pramana S. S.,Yantara N.,Mathews N.,Mhaisalkar S.,J. Electrochem. Soc.,2012,159(3),B247—B250
    [20] Liu C. P.,Chen Z. H.,Wang H. E.,Jha S. K.,Zhang W. J.,Bello I.,Zapien J. A.,Appl. Phys. Lett.,2012,100(24),243102
    [21] Lin H.,Xia W.,Wu H. N.,Tang C. W.,Appl. Phys. Lett.,2010,97,123504
    [22] Zhang F. J.,Xu X. W.,Tang W. H.,Zhang J.,Zhuo Z. L.,Wang J.,Wang J.,Xu Z.,Wang Y. S.,Sol. Energy Mater. Sol. Cells,2011,95(7),1785—1799
    [23] Krüger J.,Plass R.,Grtzel M.,Cameron P. J.,Peter L. M.,J. Phys. Chem. B,2003,107(31),7536—7539
    [24] Dloczik L.,Ileperuma O.,Lauermann I.,Peter L. M.,Ponomarev E. A.,Redmond G.,Shaw N. J.,Uhlendorf I.,J. Phys. Chem. B,1997,101(49),10281—10289
    [25] Savadogo O.,Mandal K. C.,Sol. Energy Mater. Sol. Cells,1992,26,117—136
    [26] Chen C.,Peng R.,Wu H.,Wang M.,J. Phys. Chem. C,2009,113(28),12608—12614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700