增强型细菌纤维素/聚乙烯醇水凝胶的制备研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on Preparation of Enhanced Bacterial Cellulose/Polyvinyl Alcohol Hydrogels
  • 作者:焦彩珍 ; 丁玲 ; 陈鑫 ; 张继
  • 英文作者:JIAO Cai-zhen;DING Ling;CHEN Xin;ZHANG Ji;College of Geography and Environmental Science, Northwest Normal University;Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University;
  • 关键词:细菌纤维素 ; 聚乙烯醇 ; 氧化石墨烯 ; 凹凸棒石 ; 吸附 ; 刚果红
  • 英文关键词:Bacterial cellulose;;Polyinyl alcohol;;Graphite oxide;;Attapulgite;;Adsorption;;Congo red
  • 中文刊名:GFZT
  • 英文刊名:Polymer Bulletin
  • 机构:西北师范大学地理与环境科学学院;甘肃特色植物有效成分制品工程技术研究中心;
  • 出版日期:2019-01-18 19:05
  • 出版单位:高分子通报
  • 年:2019
  • 期:No.238
  • 基金:国家自然基金(51873175)
  • 语种:中文;
  • 页:GFZT201902008
  • 页数:12
  • CN:02
  • ISSN:11-2051/O6
  • 分类号:66-77
摘要
基于细菌纤维素的水凝胶,因其疏松多孔和环境友好的特点而被认为在废水处理中具有潜在的应用前景。在本研究中,我们利用氧化石墨烯和凹凸棒土来增强细菌纤维素/聚乙烯醇复合水凝胶的吸附性能,并以染料刚果红(CR)为例进行了测试。FTIR、XRD、SEM、BET和TG-DSC分析结果表明,增强后的水凝胶具有更好的亲水性、更大的比表面积和良好的热稳定性。吸附实验遵循准一级动力学和Freundlich等温模型,并且增强后的水凝胶的溶胀性能和吸附能力均显著提高,特别是在酸性条件下。此外,制备的水凝胶显示出有效去除CR的可重复使用性。因此,该水凝胶有望用作酸性染料废水处理中的吸附剂。
        Bacterial cellulose-based hydrogels are considered to have potential applications in wastewater treatment owing to their loose porous and environmental friendliness. In this research, we utillize the graphene oxide and the attapulgite to enhance the adsorption performance of bacterial cellulose/polyvinyl alcohol composite hydrogel, and have tested it with the dye congo red(CR) as an example. The FTIR, XRD, SEM, BET and TG-DSC analysis results indicate that after the enhanced hydrogel has better hydrophilicity, larger specific surface area and good thermal stability. In the adsorption tests, we find the adsorption exhibited a pseudo-first-order kinetics and Freundich isothermal. The enhanced hydrogel has a better swelling property and thus higher adsorption capacity, especially under acidic conditions. In addition, the prepared hydrogels show reusability for the efficient removal of CR. Consequently, our hydrogels are expected to be used as adsorbents in acid dye wastewater treatment.
引文
[1] Sanjay K. Sharma. Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. USA: Scrivener Publishing Wiley, 2015: 1~459.
    [2] Wang C Y, Zeng W J, Jiang TT, et al. Separation & Purification Technology, 2018(Available online 30 April 2018).
    [3] Wang F, Pan Y, Cai P, et al. Bioresource Technol, 2017, 241:482~490.
    [4] Jin X, Xiang Z, Liu Q, et al. Bioresource Technol, 2017, 244(Pt 1):844.
    [5] Werber J R, Osuji C O, Elimelech M. Nat Rev Mater, 2016, 1(5):16018.
    [6] Yakout A A, Elsokkary R H, Shreadah M A, et al. Carbohydr Polym, 2017, 172:20.
    [7] Ramteke L P, Gogate P R. Sep Purif Technol, 2016, 163:215~227.
    [8] Ran Y, Li H, Mu H, et al. Water Res, 2016, 95:59~89.
    [9] Tao X, Li K, Yan H, et al. Environm Pollut, 2015, 209:21~29.
    [10] Sun X, Yang L, Li Q, et al. Chem Eng J, 2014, 241(1):175~183.
    [11] Chen S, Huang Y. Mater Lett, 2015, 142:235~237.
    [12] Shen W, Chen S, Shi S, et al. Carbohydr Polym, 2009, 75(1):110~114.
    [13] Ion V A, Parvulescu O C, Dobre T. Appl Surface Sci, 2015, 335:137~146.
    [14] Li G, Sun K, Li D, et al. Colloids & Surfaces A Physicochem Eng Asp, 2016, 509:408~414.
    [15] Stoicaguzun A, Stroescu M, Jinga S I, et al. Int J Biol Macromol, 2016, 91:1062~1072.
    [16] Kim T H, An D B, Oh S H, et al. Biomaterials, 2015, 40:51~60.
    [17] Deshmukh K, Ahamed M B, Deshmukh R R, et al. Polym-Plast Technol Eng, 2015, 223(8):913~923.
    [18] Guo Y, Duan B, Cui L, et al. Cellulose, 2015, 22(3):2035~2043.
    [19] Dai H, Huang Y, Huang H. Carbohydr Polym, 2017, 185:1~11.
    [20] Pourjavadi A, Nazari M, Kabiri B, et al. Rsc Adv, 2016, 6(13):10430~10437.
    [21] Dai H, Huang H. Cellulose, 2016, 24(1):1~16.
    [22] Haden W L, Schwint I A. Ind Eng Chem, 1967, 59(9):58~69.
    [23] Mu B, Wang A. Journal of Environ Chem Eng, 2016, 4(1):1274~1294.
    [24] Xing R, Pan F, Zhao J, et al. Rsc Adv, 2016, 6(17):14381~14392.
    [25] Yi L, Kang Y, Mu B, et al. Chem Eng J, 2014, 237(2):403~410.
    [26] Hestrin S, Schramm M. Biochem J, 1954, 58(2):345.
    [27] Huang X, Zhan X, Wen C, et al. J Mater Sci Technol, 2018, 34(5):855~863.
    [28] Gan L, Shang S, Hu E, et al. Appl Surface Sci, 2015, 357:866~872.
    [29] Xia Liu, Xuetao Xu, Sun Ju, et al. Chem Eng J, 2018, 343:217~224.
    [30] Dai H, Ou S, Liu Z, et al. Carbohydr Polym, 2017, 169:504~514.
    [31] Wang X, Guo C, Hao W, et al. Int J Biol Macromol, 2018, 118(Part A):722~730.
    [32] Liu D, Bian Q, Li Y, et al. Compos Sci Technol, 2016, 129:146~152
    [33] Du R, Zhao F, Peng Q, et al. Carbohydr Polym, 2018, 194:200~207.
    [34] Islam M S, Rahaman M S, Yeum J H. Carbohydr Polym, 2015, 115:69~78.
    [35] Guan Y, Bian J, Peng F, et al. Carbohydr Polym, 2014, 101(1):272~280.
    [36] Pan D, Fan Q, Fan F, et al. Sep Purif Technol, 2017, 177:86~93.
    [37] Huang W, Shen J, Li N, et al. Polym Eng Sci, 2015, 55(6):1361~1366.
    [38] Qiao K, Zheng Y, Guo S, et al. Compos Sci Technol, 2015, 118:47~54.
    [39] Dinu M V, P■ádn■ M, Drgan E S, et al. J Polym Res, 2013, 20(11):1~10.
    [40] And M K, Jaroniec M. Chem Mater, 2001, 13(10):3169~3183.
    [41] Yong K, Jia Y, Wang Z L, et al. Appl Clay Sci, 2009, 46(4):358~362.
    [42] Usman A, Hussain Z, Riaz A, et al. Carbohydr Polym, 2016, 153:592~599.
    [43] Chahkandi M. Materials Chem Phys, 2017, 202:340~351.
    [44] Buckley C A. Water Science & Technology A Journal of the International Association on Water Pollution Research, 1992, 25(10):203~209.
    [45] Freundlich H. J Phys Chem, 1906, 57:385~470.
    [46] Langmuir I. J Chem Phys, 1918, 40(9):1361~1403.
    [47] Alkan, Demirbas, Dogan. Microporous Mesoporous Mater, 2007, 101(3):388~396.
    [48] Vimonses V, Lei S, Jin B, et al. Appl Clay Sci, 2009, 43(3):465~472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700