用户名: 密码: 验证码:
基于甲胺铅碘钙钛矿太阳电池中有效载流子产率的厚度拟合优化分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimizing of Thickness Combination in MAPbI_3 Inverted Perovskite Solar Cells with the Concept of Effective Carrier Generation
  • 作者:刘桂林 ; 张忠扬 ; 席曦 ; 东为富 ; 陈国庆 ; 朱华新
  • 英文作者:LIU Gui-lin;ZHANG Zhong-yang;XI Xi;DONG Wei-fu;CHEN Guo-qing;ZHU Hua-xin;School of Science,Jiangnan University;School of Chemical and Material Engineerging,Jiangnan University;International Joint Research Center for Photoresponse Functional Molecular Materials;College of Ocean,Zhejiang University;
  • 关键词:钙钛矿太阳电池 ; 有效载流子 ; 产生速率 ; 厚度拟合
  • 英文关键词:perovskite solar cell;;effective carrier;;generation rate;;thickness combination
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:江南大学理学院;江南大学化学与材料工程学院;光响应功能分子材料国际联合研究中心;浙江大学海洋学院;
  • 出版日期:2019-07-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.249
  • 基金:国家自然科学基金(61804066);; 江苏省自然科学基金(BK20180601,BK20180596);; 江南大学高校自主科研基金(JUSRP11834,JUSRP11834B);; 江苏省博士后基金(2018K112C,2018K113C)
  • 语种:中文;
  • 页:RGJT201907022
  • 页数:6
  • CN:07
  • ISSN:11-2637/O7
  • 分类号:141-146
摘要
有机金属钙钛矿太阳电池已经吸引了科研界广泛的研究热情,然而,钙钛矿太阳电池的发展仍需要持续的研究,这其中,活性层最优厚度的优化仍依赖大量的实验研究,这种方式耗费巨大的财力、物力及人员时间和精力,而对于活性层厚度优化与光电子产率之间的关系仍缺乏相应的理论研究。本文提出了一种有效载流子产率的概念,并利用光学传输矩阵方程,对其进行厚度的优化拟合。通过计算发现,当光子流密度处于AM 1. 5G条件下时,各功能层的厚度均对钙钛矿太阳能电池的有效载流子产率有很大的影响。研究显示,在反式器件结构中,当空穴传输层与电子传输层的厚度分别为55 nm及40 nm时,器件的光电转换效率最优。该方法为加快钙钛矿太阳能电池的优化提供了一种快速有效的手段。
        Organic-metal hybrid perovskite solar cells are attracting a great deal of attention to the scientific community.However,the academic system of perovskite solar cells still needs further development. Most of the active layers' thickness combinations are carried out from practical experiments on constant thickness. The theoretic process for this subject is still unsubstantial. In this paper,a concept of effective carrier generation rate,based on light intensity distribution,is given. For maximizing this rate,the thickness combination of active layers can be obtained. In order to keep the simulation process closer to practical fabrication,photon flux distribution of AM 1. 5 G and transmissivity of substrates were introduced into the calculation. It was found that the best optimization for hole transport layer and electron transport layer was 55 nm and 40 nm,respectively. The main contribution of this method is that it gives a rapid search range of thickness combination of donor and acceptor layers.
引文
[1] Liu X,Guo X,Lv Y,et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes[J]. ACS Applied Materials&Interfaces,2018,10(21):18141-18148.
    [2] Meng X,Zhou J,Hou J,et al. Versatility of carbon enables all carbon based perovskite solar cells to achieve high efficiency and high stability[J]. Advanced Materials,2018,30(21):1706975.
    [3] Kim S,Lee H S,Kim J M,et al. Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes[J]. Journal of Alloys and Compounds,2018,774:404-411.
    [4] Devi C,Mehra R. Deep insights into the advancements and applications of perovskite based photovoltaic cells[J]. Journal of Energy Chemistry.2018,27(3):753-763.
    [5] Liang X,Cheng Y,Xu X,et al. Enhanced performance of perovskite solar cells based on vertical Ti O2nanotube arrays with full filling of CH3NH3PbI3[J]. Applied Surface Science,2018,451:250-257.
    [6] Chen W,Wu Y,Tu B,et al. Inverted planar organic-inorganic hybrid perovskite solar cells with Ni Oxhole-transport layers as light-in window[J]. Applied Surface Science,2018,451:325-332.
    [7] Zhao W,Li H,Liu Z,et al. Controlled defects and enhanced electronic extraction in fluorine incorporated zinc oxide for high-performance planar perovskite solar cells[J]. Solar Energy Materials and Solar Cells,2018,182:263-271.
    [8] Yuan H,Zhao Y,Duan J,et al. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3perovskite solar cells[J]. Electrochimica acta,2018,279:84-90.
    [9] Remeika M,Qi Y. Scalable solution coating of the absorber for perovskite solar cells[J]. Journal of Energy Chemistry,2018,27(4):1101-1110.
    [10] Tang Y,Yang H,Huang X,et al. Low-pressure assisted solution synthesis of CH3NH3PbI3-xClxperovskite solar cells[J]. Ceramics International,2018,44(10):11603-11609.
    [11] Francesco D G,Santhosh S,Henri F,et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in.substrate using slot die coating[J]. Solar Energy Materials and Solar Cells,2018,181:53-59.
    [12] Wu F,Chen T,Yue X,et al. Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells[J]. Organic Electronics,2018,58:6-11.
    [13] Aswani Y,Lee H,Graetzl M,et al. Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency[J].Science,2011,334(6065):629-634.
    [14] Peumans P,Yakimov A,Forrest S R. Erratum:“Small molecular weight organic thin-film photodetectors and solar cells”[J]. Journal of Applied Physics,2004,95:2938.
    [15] Ren J,Zheng J,Zhao J. Optimized design of active layers in organic donor-acceptor solar cells[J]. Acta Physica Sinica,2007,56(5):2868-2872.
    [16] Xi X,Liu G,Li G,et al. The study on the transport efficiency of effective excitons and relationship with the thickness of active materials[J].Optoelectronics and Advanced Materials-Rapid Communications,2015,9(11-12):1369-1374.
    [17] Pettersson L A A,Roman L S,Ingans O. Modeling photocurreng action spectra of photovoltaic devices based on organic thin films[J]. Journal of Applied Physics,1999,86:487.
    [18] Wang C H,Zhang C J,Yang J L,et al. Energy level and thickness control on PEDOT∶PSS Layer for efficient planar heterojunction perovskite cells[J]. Journal of Physics D-Applied Physics,2018,51(2):025110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700