原子辅助光力系统中快慢光的量子调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantum control of fast/slow light in atom-assisted optomechanical cavity
  • 作者:谷开慧 ; 严冬 ; 张孟龙 ; 殷景志 ; 付长宝
  • 英文作者:Gu Kai-Hui;Yan Dong;Zhang Meng-Long;Yin Jing-Zhi;Fu Chang-Bao;College of Electronic Science and Engineering, Jilin University;College of Optical and Electronical Information, Changchun University of Science and Technology;School of Science and Key Laboratory of Materials Design and Quantum Simulation,Changchun University;School of Physics, Tonghua Normal College;
  • 关键词:光力 ; 光力诱导透明 ; 快慢光
  • 英文关键词:optomechanics;;optomechanically induced transparency;;fast and slow light
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:吉林大学电子科学与工程学院;长春理工大学光电信息学院光电科学分院;长春大学理学院材料设计与量子模拟实验室;通化师范学院物理学院;
  • 出版日期:2019-03-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:教育部“春晖计划”项目(批准号:Z2017030);; 吉林省自然科学基金(批准号:2016286,GH16102)资助的课题~~
  • 语种:中文;
  • 页:WLXB201905014
  • 页数:9
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:116-124
摘要
随着纳米科技以及半导体技术的迅猛发展,光力诱导透明、快慢光和光存储以及其他在光力系统中发现的量子光学和非线性光学效应成为人们目前研究的热点.本文将薄膜腔光力系统同被束缚在腔中的二能级冷原子系综相耦合,通过直接在薄膜振子上引入弱辅助驱动场来研究该原子辅助光力系统中原子和相位对量子相干性质及其快慢光的调控.经过分析发现,通过改变辅助驱动场的强度可直接实现对光力诱导透明窗口深度的调控,通过改变辅助场与探测场之间的相位差,可实现输出的探测场在"吸收"、"透明"和"增益"之间相互转换,进而对弱探测场进行动态调控实现光开关.与此同时,还发现系统的群延迟时间随相位差的改变呈周期性变化.通过调节相位差及原子数,不但可以改变群延迟时间,还可实现快慢光之间的相互转换.
        In recent years, due to the rapid development of nano science and advanced semiconductor technology, one is able to observe more significant quantum optomechanical effects as optomechanical system turns smaller in size. Optomechanically induced transparency, fast and slow light, optical storage as well as other quantum optical and nonlinear optical effects have become the focus of research. On the other hand, the optomechanical systems coupled to other small subsystems(such as atoms, quantum dots, single electron transistors, etc.) also attract great attention in research. This is because the coupling system has not only provided more degrees of freedom for quantum manipulation, but also opened up more channels for classical and quantum information transfer. In this paper we study the optomechanically induced transparency and fast/slow light phase control in atom-assisted optomechanical cavity. Unlike the traditional systems, in this model the mechanical resonator is directly driven by a weak auxiliary driving field. We therefore find that with the change of amplitude ratio and phase difference between the auxiliary driving field and the probe field, the absorption and dispersion properties of the whole system and the group delay time vary accordingly. In the absence of auxiliary field, we observe the spectral features of the hybrid electromagnetically induced transparency and optomechanically induced transparency(OMIT) in an atom-cavity-oscillator tripartite optomechanical system. When there exists no phase difference between the auxiliary field and the probe field, we find that the membrane resonance absorption is enhanced with the increase of auxiliary field strength at resonance, causing the the optomechanically induced transparency to be suppressed, and therefore we can modify the amplitude of auxiliary field to control the depth of the OMIT window. When keeping amplitude ratio between the auxiliary field and the probe field unchanged,the modification of the phase difference between the auxiliary field and the probe field directly affects the we can not only realize the manipulation of OMIT window depth, but also control the transformation of tunable optical switch among "absorption", "transparent" and "gain" of the system. Therefore, through changing the phase of auxiliary field and probe field, we can not only realize the manipulation of OMIT window depth, but also control the transformation of tunable optical switch among "absorption", "transparent" and "gain". In the meantime, we find that the system's group delay time varies periodically with the change of phase difference. It is worth noting that by adjusting the phase difference and the atomic number, we can not only change the magnitude of the group delay, but also realize the conversion between slow light and fast light effect.
引文
[1]Agarwal G S,Huang S M 2010 Phys.Rev.A 81 041803(R)
    [2]Safavi-Naeini A H,Mayer Alegre T P,Chan J,Eichenfield M,Winger M,Lin Q,Hill J T,Chang D E,Painter O 2011Nature 472 69
    [3]Chang D E,Safavi-Naeini A H,Hafezi M,Painter O 2011 New J.Phys.13 023003
    [4]Gu K H,Yan X B,Zhang Y,Fu C B,Liu Y M,Wang X,Wu J H 2015 Opt.Commun.338 569
    [5]Chen B,Jiang C,Zhu K D 2011 Phys.Rev.A 83 055803
    [6]Jiang C,Liu H X,Cui Y S,Li X W,Chen G B,Chen B 2013Opt.Express 21 12165
    [7]Tarhan D,Huang S,Müstecapl?o?lu?E 2013 Phys.Rev.A87 013824
    [8]Fiore V,Yang Y,Kuzyk M C,Barbour R,Tian L,Wang H2011 Phys.Rev.Lett.107 133601
    [9]Tian L,Wang H L 2010 Phys.Rev.A 82 053806
    [10]Farman F,Bahrampour A R 2015 Phys.Rev.A 91 033828
    [11]McGee S A,Meiser D,Regal C A,Lehnert K W,Holland MJ 2013 Phys.Rev.A 87 053818
    [12]Qu K,Agarwal G S 2013 Phys.Rev.A 87 031802(R)
    [13]Yan X B,Cui C L,Gu K H,Tian X D,Fu C B,Wu J H2014 Opt.Express 22 4886
    [14]Barzanjeh S,Naderi M H,Soltanolkotabi M 2011 Phys.Rev.A 84 023803
    [15]Chan J,Alegr T P M,Safavi-Naeini A H,Hill J F,Krause A,Gr?blacher S,Aspelmeyer M,Painter O 2011 Nature 478 89
    [16]Rabl P,Genes C,Hammerer K,Aspelmeyer M 2009 Phys.Rev.A 80 063819
    [17]Mari A,Eisert J 2009 Phys.Rev.Lett.103 213603
    [18]Gu W J,Li G X 2013 Phys.Rev.A 88 013835
    [19]Mancini S,Giovannetti V,Vitali D,Tombesi P 2002 Phys.Rev.Lett.88 120401
    [20]Hartmann M J,Plenio M B 2008 Phys.Rev.Lett.101 200503
    [21]Mazzola L,Paternostro M 2011 Sci.Rep.1 199
    [22]Yan X B 2017 Phys.Rev.A 96 053831
    [23]Zhang X L,Bao Q Q,Yang M Z,Tian X S 2018 Acta Phys.Sin.67 104203(in Chinese)[张秀龙,鲍倩倩,杨明珠,田雪松2018物理学报67 104203]
    [24]Stannigel K,Rabl P,Sorensen A S,Zoller P,Lukin M D 2010Phys.Rev.Lett.105 220501
    [25]Li J J,Zhu K D 2011 J.Appl.Phys.110 114308
    [26]Agarwal G S,Huang S M 2014 New J.Phys.16 033023
    [27]Liu H,Cao S Y,Meng F,Lin B K,Fang Z J 2015 Acta Phys.Sin.64 094204(in Chinese)[刘欢,曹士英,孟飞,林百科,方占军2015物理学报64 094204]
    [28]Chang Y,Shi T,Liu Y X,Sun C P,Nori F 2011 Phys.Rev.A 83 063826
    [29]Fu C B,Yan X B,Gu K H,Cui C L,Wu J H,Fu T D 2013Phys.Rev.A 87 053841
    [30]Han M,Gu K H,Liu Y M,Zhang Y,Wang X C,Tian X D,Fu C B,Cui C L 2014 Acta Phys.Sin.63 094206(in Chinese)[韩明,谷开慧,刘一谋,张岩,王晓畅,田雪冬,付长宝,崔淬砺2014物理学报63 094206]
    [31]Yan D,Wang Z H,Ren C N,Gao H,Li Y,Wu J H 2015Phys.Rev.A 91 023813
    [32]He Q Y,Ficek Z 2014 Phys.Rev.A 89 022332
    [33]Genes C,Vitali D,Tombesi P 2008 Phys.Rev.A 77 050307
    [34]Genes C,Ritsch H,Drewsen M 2009 Phys.Rev.A 80 061803
    [35]Yi Z,Li G X,Wu S P,Yang Y P 2014 Opt.Express 22 20060
    [36]Walls D F,Milburn G J 1944 Quantum Optics(Berlin:Springer)p296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700