光功率对激光重熔金属陶瓷涂层温度场的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Laser Power on Temperature Field of Laser Remelted Cermet Coating
  • 作者:赵运才 ; 何文 ; 张佳茹
  • 英文作者:ZHAO Yuncai;HE Wen;ZHANG Jiaru;School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology;
  • 关键词:激光重熔 ; 金属陶瓷涂层 ; 光功率 ; 温度场
  • 英文关键词:laser remelting;;cermet coating;;laser power;;temperature field
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:江西理工大学机电工程学院;
  • 出版日期:2019-02-03 07:05
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.504
  • 基金:国家自然科学基金项目(51565017);; 江西省自然科学基金项目(2012-BAB206026);; 江西省教育厅资助项目(GJJ14424)
  • 语种:中文;
  • 页:SJGY201902030
  • 页数:7
  • CN:02
  • ISSN:61-1133/TG
  • 分类号:124-129+133
摘要
为了确定不同功率对激光重熔金属陶瓷涂层温度场的影响,针对超音速等离子喷涂工艺制备的Fe40+Ni60+35WC金属陶瓷涂层,建立了三维瞬态温度场模型,分析激光重熔过程温度场加热冷却的规律,然后通过实验确定了激光重熔金属陶瓷涂层的温度场。结果表明:光斑中心的温度最高。在同一时刻,随着激光功率的增加,光斑中心的最高温度也线性增加;在同一节点,激光功率与峰值温度成正比;不同时刻下的温度场,光斑中心前侧温度梯度大于后侧温度梯度。在此重熔涂层工艺系统中,当激光功率为2.5 kW,扫描速度为800 mm/min,光斑直径为6 mm时,可得到与基体冶金结合较好的高质量涂层。
        In order to determine the influence of different powers on the temperature field of laser remelted cermet coating,aiming at Fe40+Ni60+35 WC metal ceramic coating prepared by supersonic plasma spraying process, the three-dimensional transient temperature field model was established. Meanwhile, the heating and cooling law of temperature field in laser remelting process was analyzed, and then, the temperature field of laser remelting cermet coating was determined by experiment. The results indicate that the temperature of the light spot center is the highest. With the increase of laser power,the maximum temperature of the center of the light spot also increases linearly at the same time. The laser power is proportional to the peak temperature at the same node. The temperature gradient in the front of spot center is greater than the temperature gradient in the rear of spot center at different time. In the remelting coating process system, when the laser power is 2.5 kW, the scanning speed is 800 mm/min, and the light spot diameter is 6 mm, the high quality coating which has good metallurgical bonding with matrix can be obtained.
引文
[1]Kovík O,Hau ild P,Med icky J,et al.Fatigue crack growth in bodies with thermally sprayed coating[J].Journal of Thermal Spray Technology,2016,25(1):1-10.
    [2]Kumar P,Sidhu B S.Characterization and high-temperature erosion behaviour of HVOF thermal spray cermet coatings[J].Journal of Materials Engineering and Performance,2016,25(1):1-9.
    [3]Baranova T F,Valiakhmetov S A.Ceramic material for making heat-resistant products[J].Refractories and Industrial Ceramics,2016,57(1):46-49.
    [4]Wang Y,Li C G,Tian W,et al.Laser surface remelting of plasma sprayed nanostructured Al2O3-13wt%Ti O2,coatings on titanium alloy[J].Applied Surface Science,2009,255(20):8603-8610.
    [5]Chen J,Qiao B,Yang J,et al.Study on Microstructure and performance of nano-crystalline nickel coating on 45 steel surface by laser remelting[J].Hot Working Technology,2010,39(24):176-178.
    [6]Dong X,Wang Y,Zhang N,et al.Effect of Oxyacetylene Flame Remelting on Microstructure and Performance of Ni-based WC Coating[J].Hot Working Technology,2013,42(12):154-157.
    [7]李志明,钱士强.激光重熔等离子喷涂涂层研究现状与展望[J].上海工程技术大学学报,2009,23(3):263-269.
    [8]Matějíc姚ek J,Holub P.Laser Remelting of Plasma-Sprayed Tungsten Coatings[J].Journal of Thermal Spray Technology,2014,23(4):750-754.
    [9]Li J F,Li L,Stott F H.A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials[J].International Journal of Heat&Mass Transfer,2004,47(25):5523-5539.
    [10]Palumbo G,Pinto S,Tricarico L.Numerical finite element investigation on laser cladding treatment of ring geometries[J].Journal of Materials Processing Technology,2004,155(1):1443-1450.
    [11]Hu H,Ding X,Wang L.Numerical analysis of heat transfer during multi-layer selective laser melting of Al Si10Mg[J].Optik-nternational Journal for Light and Electron Optics,2016,127(20):8883-8891.
    [12]戴德平,蒋小华,蔡建鹏,等.激光熔覆Inconel718镍基合金温度场与应力场模拟[J].中国激光,2015(9):113-120.
    [13]张德强,郝延杰,李金华.Cr12Mo V激光熔覆温度场的模拟与验证[J].热加工工艺,2016,45(20):157-164.
    [14]朱润东,李志勇,李晓锡,等.AZ91D镁合金表面激光熔覆Al-Cu合金的温度场模拟与验证[J].表面技术,2014(6):84-89.
    [15]Chen L,Xie P L.Numerical Analysis of Temperature Field in Laser Cladding on Teeth Surfaces of Gear Shaft[J].Applied Mechanics&Materials,2010,29-32:571-576.
    [16]程建,孙琨,马利锋,等.激光重熔合成Fe-Al涂层温度场及应力场数值模拟[J].材料热处理学报,2014,35(8):219-225.
    [17]Hofman J T,De Lange D F,Pathiraj B,et al.FEM modeling and experimental verification for dilution control in laser cladding[J].Journal of Materials Processing Technology,2011,211(2):187-196.
    [18]王东生,田宗军,沈理达,等.Ti Al合金表面激光重熔复合陶瓷涂层温度场数值模拟及组织分析[J].中国激光,2009,36(1):224-230.
    [19]刘志东,陈勇,朱军,等.45钢喷射电镀Ni层激光重熔温度场数值模拟及其性能研究[J].应用激光,2007,27(2):104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700