生物炭施用量对紫花苜蓿叶片PSⅡ光化学特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Biochar Application Amount on Photosynthetic SystemⅡ Photochemical Characteristics of Alfalfa Leaves
  • 作者:张进红 ; 吴波 ; 王冉 ; 王国良 ; 贾春林 ; 张清平
  • 英文作者:Zhang Jinhong;Wu Bo;Wang Ran;Wang Guoliang;Jia Chunlin;Zhang Qingping;Shandong Institute of Agriculture Sustainable Development/Key Laboratory of East China Urban Agriculture,Ministry of Agriculture;Animal Husbandry Bureau of Kenli District,Dongying;
  • 关键词:生物炭 ; 施用量 ; 紫花苜蓿 ; 叶绿素荧光 ; PSⅡ
  • 英文关键词:Biochar;;Application amount;;Alfalfa;;Chlorophyll fluorescence;;Photosynthetic SystemⅡ
  • 中文刊名:AGRI
  • 英文刊名:Shandong Agricultural Sciences
  • 机构:山东省农业可持续发展研究所/农业部华东都市农业重点实验室;东营市垦利区畜牧局;
  • 出版日期:2018-09-30
  • 出版单位:山东农业科学
  • 年:2018
  • 期:v.50;No.325
  • 基金:山东省农业科学院青年科研基金项目(2015YNQ24);; 山东省自然科学基金项目(ZR2017YL020);; 国家牧草产业技术体系项目(CARS-34)
  • 语种:中文;
  • 页:AGRI201809015
  • 页数:6
  • CN:09
  • ISSN:37-1148/S
  • 分类号:72-77
摘要
利用叶绿素荧光仪测定了不同生物炭用量(0、0.5%、1%、2%、5%、10%)处理下紫花苜蓿叶片的快速荧光诱导动力学曲线,并采用JIP-test方法分析和处理数据,旨在探明不同用量生物炭对苜蓿叶片光合性能的影响。结果表明,施用生物炭处理能显著影响苜蓿叶片快速叶绿素荧光诱导动力学曲线。0.5%生物炭处理降低了苜蓿叶片J点的相对可变荧光强度(Vj)、OJIP曲线的初始斜率(Mo)和单位反应中心吸收、捕获、耗散、用于电子传递、传递到电子链末端的能量(ABS/RC、TRo/RC、DIo/RC、ETo/RC和REo/RC),提高了捕获的激子将电子传递到电子传递链Q-A下游的其它电子受体的概率(Ψo)、用于电子传递的量子产额(φEo)、PSⅡ最大光化学效率(φPo)和以吸收光能为基础的性能参数(PIabs)。1%~10%生物炭处理下苜蓿叶片各项指标较对照变化较小。因此施加0.5%生物炭能降低苜蓿叶片有活性的反应中心的关闭程度,改善苜蓿叶片PSⅡ受体侧电子传递链性能,提高最大光化学效率,增强苜蓿叶片的光合性能;但随着用量的增加,生物炭对苜蓿叶片光合性能的影响减弱。
        In order to investigate the effect of biochar application amount( 0,0. 5%,1%,2%,5%and 10%) on photosynthetic systemⅡ photochemical characteristics of alfalfa leaves,the rapid fluorescence induction kinetics curves( OJIP) were measured with chlorophyll fluorometer and analyzed with JIP-test.The results showed that biochar application amount could significantly change the OJIP curves of alfalfa leaves.Compared with the control,application of 0. 5% biochar decreased the relative variable fluorescence at the J-step( Vj),the approximated initial slope of fluorescence transient( Mo),the energy used for absorption,capture,dissipation,electron transfer and transfer to electron transfer terminal,and increased the probability that a trapped exciton moves an electron into electron transport chain beyond Q-A( Ψo),quantum yield for electron transport( φEo),maximum quantum yield for primary photochemistry( φPo) and performance index on absorption basis( PIabs). The change of indexes of alfalfa leaves under 1% ~ 10% biochar treatment were smaller than those of control. Therefore,the application of 0. 5% biochar caused the decrease of close degree ofreaction center and the increase of performance of electron transfer chain in acceptor side of PSⅡ,improved the maximum photochemical efficiency and then improved the photosynthetic performance of alfalfa leaves.However,the improvement impact declined with the increase of biochar application amount.
引文
[1]刘东霞,刘贵河,杨志敏.种植及收获因子对紫花苜蓿干草产量和茎叶比的影响[J].草业学报,2015,24(3):48-57.
    [2]万素梅,贾志宽,杨宝平.苜蓿光合速率日变化及其与环境因子的关系[J].草地学报,2009,17(1):27-31.
    [3]徐德聪,吕芳德,栗彬,等.不同品种美国山核桃叶绿素荧光特性的比较[J].果树学报,2008,25(5):671-676.
    [4]杨劲峰,鲁豫,刘小华,等.施用炭基缓释肥对花生光合功能的影响[J].植物营养与肥料学报,2017,23(2):408-415.
    [5]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [6]Strasser R J,Srivastava A,Tsimilli-Michael M.The fluorescence transient as a tool to characterize and screen photosynthetic samples[M]//Yunus M,Pathre U,Mohanty P(eds).Probing Photosynthesis:Mechanism,Regulation and Adaptation.London:Taylor and Francis Press,2000:445-483.
    [7]Brestic M,Zivcak M,Kalaji H M,et al.PhotosystemⅡthermostability in situ:environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.[J].Plant Physiology and Biochemistry,2012,57(8):93-105.
    [8]李旭新,刘炳响,郭智涛,等.Na Cl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化[J].应用生态学报,2013,24(9):2479-2484.
    [9]Van Heerden P D R,Tsimilli-Michael M,Krüger G H J,et al.Dark chilling effects on soybean genotypes during vegetative development:parallel studies of CO2assimilation,chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J].Physiologia Plantarum,2003,117(4):476-491.
    [10]赵建坤,李江舟,杜章留,等.施用生物炭对土壤物理性质影响的研究进展[J].气象与环境学报,2016,32(3):95-101.
    [11]赵兰凤,张新明,程根,等.生物炭对菜园土壤微生物功能多样性的影响[J].生态学报,2017,37(14):4754-4762.
    [12]陈威,胡学玉,张阳阳,等.水稻秸秆热解生物炭固碳潜力估算[J].环境科学与技术,2015,38(11):265-270.
    [13]袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J].植物营养与肥料学报,2017,23(2):468-475.
    [14]王光飞,马艳,郭德杰,等.不同用量秸秆生物炭对辣椒疫病防控效果及土壤性状的影响[J].土壤学报,2017,54(1):204-215.
    [15]王艳芳,相立,徐少卓,等.生物炭与甲壳素配施对连作平邑甜茶幼苗及土壤环境的影响[J].中国农业科学,2017,50(4):711-719.
    [16]王帅,韩晓日,战秀梅,等.氮肥水平对玉米灌浆期穗位叶光合功能的影响[J].植物营养与肥料学报,2014,20(2):280-289.
    [17]杨鑫,张启超,孙淑雲,等.水深对苦草生长及叶片PSⅡ光化学特性的影响[J].应用生态学报,2014,25(6):1623-1631.
    [18]Strasser R J,Gocindjee S A.Polyphasic chlorophyll a fluorescencetransient in plants and cyanobacteria[J].Photochemistry and Photobiology,1995,61(1):32-42.
    [19]杨宋琪,王丽娟,谢婷,等.氮源对杜氏盐藻生长及光合系统Ⅱ的影响[J].西北植物学报,2017,37(7):1397-1403.
    [20]高杰,张仁和,王文斌,等.干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响[J].应用生态学报,2015,26(5):1391-1396.
    [21]焦念元,李亚辉,李法鹏,等.间作玉米穗位叶的光合和荧光特性[J].植物生理学报,2015,51(7):1029-1037.
    [22]郑宾,赵伟,徐铮,等.不同耕作方式与氮肥类型对夏玉米光合性能的影响[J].作物学报,2017,43(6):925-934.
    [23]韩燕青,刘鑫,胡维平,等.CO2浓度升高对苦草(Vallisneria natans)叶绿素荧光特性的影响[J].植物研究,2017,37(1):45-51.
    [24]Appenroth K J,St9ckel J,Srivastava A,et al.Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J].Environmental Pollution,2001,115(1):49-64.
    [25]李鹏民,高辉远,Reto J Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
    [26]安艳,姬强,赵世翔,等.生物质炭对果园土壤团聚体分布及保水性的影响[J].环境科学,2016,37(1):293-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700