不同石灰岩生境淡竹非结构性碳水化合物浓度及分配特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Concentration and Distribution Pattern of Non-Structural Carbohydrate of Phyllostachys glauca in Different Limestone Habitats
  • 作者:梁宽 ; 樊燕 ; 冯火炬 ; 谈太腾 ; 施建敏
  • 英文作者:Liang Kuan;Fan Yan;Feng Huoju;Tan Taiteng;Shi Jianmin;Forestry College of Jiangxi Agricultural University;Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization;Institute of Tropical Forestry, Chinese Academy of Forestry;Ruichang Bureau of Forestry;
  • 关键词:淡竹 ; 可溶性糖 ; 淀粉 ; 构件 ; 碳分配 ; 裸岩率 ; 干旱
  • 英文关键词:Phyllostachys glauca;;soluble sugar;;starch;;component;;carbon distribution;;bare rock rate;;drought
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:江西农业大学林学院;江西省竹子种质资源与利用重点实验室;中国林业科学研究院热带林业研究所;江西省瑞昌市林业局;
  • 出版日期:2019-06-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目(31660198、31260174);; 江西省重点研发计划项目(20161BBF60082)
  • 语种:中文;
  • 页:LYKE201906003
  • 页数:6
  • CN:06
  • ISSN:11-1908/S
  • 分类号:25-30
摘要
【目的】探讨石灰岩山地优势种淡竹非结构性碳水化合物(NSC)浓度、分配特征及其生态意义。【方法】对赣西北石灰岩山地3种不同土壤含水率生境(连续土、半连续土和零星土)的淡竹进行取样调查,比较分析不同生境淡竹个体(全株)和构件水平(叶、枝、秆、蔸、鞭、根)的非结构性碳水化合物浓度和分配特征。【结果】1)在个体水平,从连续土、半连续土到零星土,随着土壤含水率下降,淡竹可溶性糖浓度逐渐增加,零星土生境值(3.32%±0.20%)显著高于连续土生境值(2.52%±0.17%)(P<0.05),NSC和淀粉浓度先降后升,半连续土生境值均显著低于零星土生境值(P<0.05); 2)在构件水平,3种土壤生境淡竹叶的NSC、可溶性糖和淀粉浓度高,枝和根次之,秆、蔸和鞭相对较低;3)随着土壤含水率降低,淡竹根中可溶性糖浓度升高,增加幅度大于其他构件,半连续土和零星土生境增幅分别为74.29%和39.35%;叶、根等生理活性高的构件可溶性糖分配比例增加,相比连续土生境,在零星土生境叶、根分别增加71.26%、50.61%,而秆、蔸、鞭等贮存的构件分配比例均减少。【结论】淡竹通过调节个体和构件非结构性碳水化合物浓度和分配来适应干旱胁迫,构件水平的NSC调节行为比个体水平能更深入反映植物应对干旱胁迫的生理策略。
        【Objective】 This study aimed to investigate the concentration and distribution pattern of non-structural carbohydrate(NSC) in Phyllostachys glauca, a dominant species in limestone mountains, and the ecological significance.【Method】The NSC concentration and distribution characteristics of individual(whole plant)and component level(leaf, branch, stem, stump, rhizome and root) of P. glauca in three different soil moisture habitats(continuous soil, semi-continuous soil and sporadic soil) in the limestone mountain area of Northwest Jiangxi Province were measured and analyzed.【Result】The results showed that: 1) At individual level, from continuous soil and semi-continuous soil to sporadic soil, the concentration of soluble sugars increased gradually with the decrease of soil water content, and the value in sporadic soil(3.32% ± 0.20%) was significantly higher than that in continuous soil(2.52% ± 0.17%)(P< 0.05). The starch and NSC concentration decreased initially and then increased, and the values in semi-continuous soil were all significantly lower than those in sporadic soil(P < 0.05). 2) At the component level, the concentration of NSC, soluble sugars and starch in leaves were the highest in the three habitats, followed by branches and roots, and relatively lower in stems, stumps and rhizomes. 3)With the decrease of soil water content, the increment of soluble sugars concentration in P. glauca roots was greater than that in other parts. Compared with the value in continuous soil habitat, that in semi-continuous soil and sporadic soil increased by 74.29%, and 39.35%, respectively. The distribution proportion of soluble sugars in the components with high physiological activity(leave and root) in sporadic soil habitat increased by 71.26% and 50.61%, respectively compared with that in continuous soil habitats, while the distribution proportion in the stored components of stems, stumps and rhizomes decreased.【Conclusion】Our studies indicate that P. glauca has a physiological mechanism to cope with drought stress by regulating the concentration and distribution of non-structural carbohydrate both at individual and component level. The NSC regulation behavior at the component level can reflect the physiological strategies of plants to cope with drought stress more deeply than that at the individual level.
引文
董蕾,李吉跃.2013.植物干旱胁迫下水分代谢、碳饥饿与死亡机理.生态学报,33(18):5477-5483.(Dong L,Li J Y.2013.Mechanisms of water metabolism,carbon starvation and death under drought stress in plants.Journal of Ecology,33(18):5477-5483.[in Chinese])
    杜天真,黎祖尧,杨光耀,等.1994.石灰岩地区淡竹立地条件研究.江西农业大学学报,16(1):82-87.(Du T Z,Li Z Y,Yang G Y,et al.1994.Study on site of Phyllostachys glauca in limestone area.Acta Agriculturae Universitatis Jiangxiensis,16(1):82-87.[in Chinese])
    高华端.2003.贵州陡坡退耕地立地分类系统研究.水土保持研究,10(4):76-79.(Gao H D.2003.Study on site classification system of steep cultivated land for quitting in Guizhou Province.Research of Soil and Water Conservation,10(4):76-79.[in Chinese])
    高英志,王艳华,王静婷,等.2009.草原植物碳水化合物对环境胁迫响应研究进展.应用生态学报,20(11):2827-2831.(Gao Y Z,Wang Y H,Wang J T,et al.2009.Research advances in the responses of carbohydrate in grassland plants to environmental stress.Chinese Journal of Applied Ecology,20(11):2827-2831.[in Chinese])
    郭柯,刘长成,董鸣.2011.我国西南喀斯特植物生态适应性与石漠化治理.植物生态学报,35(10):991-999.(Guo K,Liu C C,Dong M.2011.Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China.Chinese Journal of Plant Ecology,35(10):991-999.[in Chinese])
    雷虹,王凯,田浩,等.2017.小叶锦鸡儿幼苗非结构性碳水化合物积累及分配对干旱胁迫的响应.生态学杂志,36(11):3168-3175.(Lei H,Wang K,Tian H,et al.2017.Responses of non-structural carbohydrates accumulation and distribution of Caragana microphylla seedlings to drought stress.Chinese Journal of Ecology,36(11):3168-3175.[in Chinese])
    梁宽,樊燕,施建敏,等.2017.石灰岩山地优势种淡竹的表型可塑性研究.江西农业大学学报,39(6):1178-1186.(Liang K,Fan Y,Shi J M,et al.2017.Clonal plasticity of a dominant species (Phyllostachys glauca) in limestone mountain in Northwest of Jiangxi Province.Acta agriculturae Universitatis Jiangxiensis,39(6):1178-1186.[in Chinese])
    刘苑秋,王芳,柯国庆,等.2011.江西瑞昌石灰岩山区退耕还林对土壤有机碳的影响.应用生态学报,22(4):885-890.(Liu Y Q,Wang F,Ke G Q,et al.2011.Effects of converting cultivated land into forest land on the characteristics of soil organic carbon in limestone mountain area in Ruichang,Jiangxi.Chinese Journal of Applied Ecology,22(4):885-890.[in Chinese])
    刘万德,苏建荣,李帅锋,等.2017.云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析.林业科学,53(6):1-9.(Liu W D,Su J R,Li S F,et al.2017.Analysis of non-structural carbohydrate variation of main tree species in the monsoons evergreen broad-leaved forest in Puer,Yunnan.Scientia Silvae Sinicae,53(6):1-9.[in Chinese])
    罗绪强,王程媛,杨鸿雁,等.2012.喀斯特优势植物种干旱和高钙适应性机制研究进展.中国农学通报,28(16):1-5.(Luo X Q,Wang C Y,Yang H Y,et al.2012.Studies on advances mechanisms of Karst dominant plant species to drought and high calcium stress.Chinese Agricultural Science Bulletin,28(16):1-5.[in Chinese])
    欧阳明,杨清培,祁红艳,等.2014.亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较.南京林业大学学报:自然科学版,38(2):105-110.Ouyang M,Yang Q P,Qi H Y,et al.2014.A comparison of seasonal dynamics of nonstructual corbchydrales for deciduous and evergreen landscape trees in subtropical region.Journal of Nanjing Forestry University:Natural Science Edition,38(2):105-110.
    容丽,王世杰,杜雪莲,等.2008.喀斯特峡谷石漠化区6种常见植物叶片解剖结构与δ13C值的相关性.林业科学,44(10):29-34.(Rong L,Wang S J,Du X L,et al.2008.Correlation between leaf anatomical structure and δ13C value of six common plant species in Karst gorge rocky desertification area.Scientia Silvae Sinicae,44(10):29-34.[in Chinese])
    王林龙,李清河,徐军,等.2015.不同种源油蒿形态与生理特征对干旱胁迫的响应.林业科学,51(2):37-43.(Wang L L,Li Q H,Xu J,et al.2015.Morphological and physiological characteristics of different provenances Artemisia ordosica to drought stress.Scientia Silvae Sinicae,51(2):37-43.[in Chinese])
    于丽敏,王传宽,王兴昌.2011.三种温带树种非结构性碳水化合物的分配.植物生态学报,35(12):1245-1255.(Yu L M,Wang C K,Wang X C.2011.Allocation of non-structural carbohydrate for three temperate tree species in Northeast China.Chinese Journal of Plant Ecology,35(12):1245-1255.[in Chinese])
    张婷,曹扬,陈云明,等.2016.生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响.水土保持学报,30(5):297-304.(Zhang T,Cao Y,Chen Y M,et al.2016.Effects of drought stress on non-structural carbohydrate of Robinia pesudoacacia saplings at the end of growing season.Research of Soil and Water Conservation,30(5):297-304.[in Chinese])
    邹琦.2000.植物生理学实验指导.北京:中国农业出版社,110-113.(Zou Q.2000.Experimental instruction in plant physiology.Beijing:China Agricultural Press,110-113.[in Chinese])
    郑云普,王贺新,娄鑫,等.2014.木本植物非结构性碳水化合物变化及其影响因子研究进展.应用生态学报,25(4):1188-1196.(Zheng Y P,Wang H X,Lou X,et al.2014.Changes of non-structural carbohydrate and its impact factors in trees:a review.Chinese Journal of Applied Ecology,25(4):1188-1196.[in Chinese])
    Adams H D,Germino M J,Breshears D D,et al.2013.Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism.New Phytologist,197(4):1142-51.
    Barbaroux C,Breda N,Dufrene E.2003.Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica).New Phytologist,157(3):605-615.
    Dietze M C,Sala A,Carbone M S,et al.2014.Nonstructural carbon in woody plants.Annual Review of Plant Biology,65:667-687.
    Fan D Y,Jie S L,Liu C C,et al.2011.The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a Karst area.Tree Physiology,31(8):865-877.
    Hoch G,Icher A,Orner C.2003.Non-structural carbon compounds in temperate forest trees.Plant Cell and Environment,6:1067-1081.
    Lannucci A,Russo M,Arena L,et al.2002.Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers.European Journal of Agronomy,16(2):111-122.
    Latt C R,Pkr N,Kang B T.2001.Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate.Forest Ecology and Management,146(1/3):145-158.
    Myers J A,Kitajima K.2007.Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest.Journal of Ecology,95:383-395.
    Martinez-Vilalta J,Sala A,Asensio D,et al.2016.Dynamics of non-structural carbohydrate in terrestrial plants:a global synthesis.Ecological Monographs,86(4):495-516.
    Newell E A,Mulkey S S,Wright J S.2002.Seasonal patterns of carbohydrate storage in four tropical tree species.Oecologia,131(3):333-342.
    O’Brien M J,Leuzinger S,Philipson C D,et al.2014.Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels.Nature Climate Change,4(8):710-714.
    Ohto M,Onai K,Furukawa Y,et al.2001.Effects of sugar on vegetative development and floral transition in Arabidopsis.Plant Physiology,127(1):252-261.
    Slewinski T L.2012.Non-structural carbohydrate partitioning in grass stems:a target to increase yield stability,stress tolerance,and biofuel production.Journal of Experimental Botany,63(13):4647-4670.
    Weiner J.2004.Allocation,plasticity and allometry in plants.Perspectives in Plant Ecology Evolution and Systematics,6(4):207-215.
    Würth M K,Peláez-Riedl S,Wright S J,et al.2005.Non-structural carbohydrate pools in a tropical forest.Oecologia,143(1):11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700