用户名: 密码: 验证码:
米槁幼苗光合作用及光响应曲线模拟对干旱胁迫的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulated photosynthetic responses of Cinnamomum migao during drought stress evaluated using Light-response Models
  • 作者:李佳 ; 刘济明 ; 文爱华 ; 邓明明 ; 熊雪 ; 柳嘉佳
  • 英文作者:LI Jia;LIU Jiming;WEN Aihua;DENG Mingming;XIONG Xue;LIU Jiajia;College of Guizhou;
  • 关键词:米槁 ; 干旱胁迫 ; 光合作用 ; 光响应模型 ; 光响应参数
  • 英文关键词:Cinnamomum migao;;drought stress;;photosynthesis;;light response model;;light response parameter
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:贵州大学;
  • 出版日期:2018-11-05 09:05
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:贵州省科技计划(黔科合SY[2015]3023-1)
  • 语种:中文;
  • 页:STXB201903016
  • 页数:10
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:160-169
摘要
为阐明米槁光合作用对干旱胁迫的响应规律与适应机制,以一年生米槁幼苗为研究对象,进行盆栽试验研究设置3种不同土壤含水量梯度,利用Li-6400便携式光合作用系统测定干旱胁迫下的光合生理指标及光响应过程,光响应曲线模拟采用直角双曲线模型、非直角双曲线模型、指数模型和直角双曲线修正模型进行拟合并对比,以期选出适用于干旱环境下的光响应模型。结果表明(1)光响应曲线模型对干旱胁迫下米槁幼苗的光合作用拟合中直角双曲线、非直角双曲线和指数模型适用于低光合有效辐射(PAR),但拟合光响应参数与实测值相差大,只有直角双曲线修正模型能够很好的拟合各个处理且拟合参数比较精确米槁幼苗。(2)光合作用的表观量子效率(Φ)小于一般植物的光合量子效率,则其对弱光的光能利用效率相对较低。(3)在较强的光合有效辐射条件下,严重干旱胁迫下的米槁净光合速率P_n显著下降,出现了明显的光抑制现象;中度胁迫下净光合速率(P_n)、最大净光合速率(P_(nmax))、光补偿点(LSP)最大,米槁具有较宽的抗旱适应范围,有一定的抗旱性;严重胁迫下P_n、P_(nmax)、LSP降低,蒸腾速率(T_r)与气孔导度(G_s)下降幅度更大,但仍具有较高的水分利用效率(WUE),米槁在严重的干旱胁迫下光合机构受到一定的损伤,但自身可以通过生理调节来积极适应不良环境,减少光合机构伤害。(4)综合来看,在人工管理或种植米槁时,为了适应米槁生长发育,建议土壤含水量保持在23.05%到14.92%之间。
        The objective of this study was to elucidate the response and adaptation mechanisms of Cinnamomum migao seedlings to drought stress. Using pot experiments,we examined the effects of three relative water levels on the growth of 1-year-old C. migao seedlings by measuring photosynthetic physiological indices and light responses under drought stress. The responses were analyzed in terms of four different light response curve models: rectangular hyperbola,non-rectangular hyperbola,exponential,and modified rectangular hyperbola. The following results were obtained.( 1) According to the values of photosynthetic parameters calculated using the four models,the rectangular hyperbola,non-rectangular hyperbola,and exponential models were suitable for low photosynthetically active radiation. However,only the modified rectangular hyperbola model provided a good fit for each treatment and the fitting parameters were more accurate.( 2) The apparent quantum efficiency( Φ) of photosynthesis of drought-stressed plants was smaller than that of normal plants,and therefore the utilization efficiency of these plants is lower.( 3) The net photosynthetic rate( P_n) of severely stressed C. migao plants decreased significantly under strong photosynthetically active radiation,whereas values for the net photosynthetic rate( P_n),maximum net photosynthetic rate( P_(nmax)),and light compensation point were the highest under conditions of moderate stress. C. migao has a wide range of stress tolerance. Under severe stress,P_n,P_(nmax),and LSP decreased,and transpiration rate( T_r) and stomatal conductance( G_s) decreased more significantly; however,the plants still had a higher water-use efficiency. Although C. migao plants suffer damage under severe drought stress,they can adjust to the adverse environments through physiological modification and by reducing damage to their photosynthetic apparatus.( 4) In order to facilitate growth and developmental adaptation in C. migao during management,it is recommended that the soil moisture content be maintained at levels between 23.05% and 14.92%.
引文
[1]Rabara R C,Tripathi P,Reese R N,Rushton D L,Alexander D,Timko M P,Shen Q J,Rushton P G.Tobacco drought stress responses reveal new targets for Solanaceae crop improvement.BMC Genomics,2015,16:484.
    [2]Sofo A,Dichio B,Montanaro G,Xiloyannis C.Photosynthetic performance and light response of two olive cultivars under different water and light regimes.Photosynthetica,2009,47(4):602-608.
    [3]Flexas J,Bota J,Galmés J,Medrano H.Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress.Physiologia Plantarum,2006,127(3):343-352.
    [4]Guo W H,Li B,Huang Y M,Zhao H X,Zhang X S.Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings.Acta Botanica Sinica,2003,45(10):1238-1244.
    [5]陆燕元,马焕成,李昊民,邓西平.土壤干旱对转基因甘薯光合曲线的响应.生态学报,2015,35(7):2155-2160.
    [6]Junior U M D S,Gon9alves J F D C,Fearnside P M.Measuring the impact of flooding on Amazonian trees:photosynthetic response models for ten species flooded by hydroelectric dams.Trees,2013,27(1):193-210.
    [7]郎莹,张光灿,张征坤,刘顺生,刘德虎,胡小兰.不同土壤水分下山杏光合作用光响应过程及其模拟.生态学报,2011,31(16):4499-4508.
    [8]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较.沈阳农业大学学报,2007,38(6):771-775.
    [9]许大全.光合作用效率.上海:上海科学技术出版社,2002:33-33.
    [10]叶子飘,王建林.基于植物光响应修正模型的水稻Kok效应研究.扬州大学学报:农业与生命科学版,2009,30(3):5-10.
    [11]邱德文,杜茂瑞.贵州苗药大果木姜子研究及产业化.贵州中医学院学报,2003,25(1):48-51.
    [12]赵立春,邱明华,邱德文,何颖.苗药大果木姜子果实挥发油化学成分研究.西北药学杂志,2009,24(05):353-354.
    [13]张小波,周涛,郭兰萍,黄璐琦,江维克,杨占南,马超一.苗药大果木姜子挥发油成分变化及其地理分布.生态学报,2011,31(18):5299-5306.
    [14]周涛,杨占南,江维克,艾强,郭培果.民族药大果木姜子果实挥发油成分的变异及其规律.中国中药杂志,2010,35(7):852-856.
    [15]Challabathula D,Zhang Q W,Bartels D.Protection of photosynthesis in desiccation-tolerant resurrection plants.Journal of Plant Physiology,2018,doi:10.1016/j.jplph.2018.05.002.
    [16]文爱华,刘济明,高攀,李丽霞,王军才,骆畅.自然干旱胁迫对米槁幼苗叶片显微结构及叶绿素含量的影响.北方园艺,2015,(14):62-66.
    [17]何春霞,李吉跃,郭明,王玉涛,陈崇.4种乔木叶片光合特性和水分利用效率随树高的变化.生态学报,2008,28(7):3008-3016.
    [18]Lewis J D,Olszyk D,Tingey D T.Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2and temperature.Tree Physiology,1999,19(4/5):243-252.
    [19]Lang Y,Wang M,Zhang G C,Zhao Q K.Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions.Photosynthetica,2013,51(3):370-378.
    [20]Thornley J H M.Mathematical Models in Plant Physiology.London:Academic Press,1976:86-110.
    [21]叶子飘,于强.光合作用光响应模型的比较.植物生态学报,2008,32(6):1356-1361.
    [22]Lang Y,Wang M,Zhang G C,Zhao Q K.Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions,Photosynthetica,2013,51(3):370-378.
    [23]Bassman J H,Zwier J C.Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P.deltoides clone.Tree Physiology,1991,8(2):145-159.
    [24]吴芹,张光灿,裴斌,徐志强,赵瑜,方立东.不同土壤水分下山杏光合作用CO2响应过程及其模拟.应用生态学报,2013,24(6):1517-1524.
    [25]王海珍,韩路,徐雅丽,牛建龙,于军.干旱胁迫下胡杨光合光响应过程模拟与模型比较.生态学报,2017,37(7):2315-2324.
    [26]陈志成,王荣荣,王志伟,杨吉华,王华田,耿兵,张永涛.不同土壤水分条件下栾树光合作用的光响应.中国水土保持科学,2012,10(3):105-110.
    [27]陈建,张光灿,张淑勇,王梦军.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程.应用生态学报,2008,19(6):1185-1190.
    [28]王荣荣,夏江宝,杨吉华,刘京涛,赵艳云,孙景宽.贝壳砂生境酸枣叶片光合生理参数的水分响应特征.生态学报,2013,33(19):6088-6096.
    [29]林保花,刘金祥,肖生鸿,杨允菲.粤西乡土香根草光合生理生态特征日动态分析.应用生态学报,2006,17(11):2041-2045.
    [30]叶子飘,张海利,黄宗安,杨小龙,康华靖.叶片光能利用效率和水分利用效率对光响应的模型构建.植物生理学报,2017,53(6):1116-1122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700