基于金刚石氮-空位中心系统的光子空间-极化超CNOT门
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photon Spatial-polarization Hyper-CNOT Gate Based on Nitrogen-vacancy Center in Diamond
  • 作者:李静 ; 刘阿鹏 ; 孙立新
  • 英文作者:LI Jing;LIU A-peng;SUN Li-xin;Shanxi Institute of Technology;
  • 关键词:偶极诱导透明 ; 量子逻辑门 ; 金刚石氮-空位中心
  • 英文关键词:dipole induced transparency;;quantum logic gate;;nitrogen-vacancy center
  • 中文刊名:LZGX
  • 英文刊名:Journal of Quantum Optics
  • 机构:山西工程技术学院基础部;
  • 出版日期:2017-11-25
  • 出版单位:量子光学学报
  • 年:2017
  • 期:v.23;No.89
  • 基金:山西工程技术学院科研基金(201706001)
  • 语种:中文;
  • 页:LZGX201704010
  • 页数:7
  • CN:04
  • ISSN:14-1187/O4
  • 分类号:76-82
摘要
量子信息学作为一门新兴学科引起了科学家的关注,量子逻辑门是量子信息处理的关键结构。在本文中,我们提出基于金刚石氮-空位中心的偶极诱导透明(DIT)过程,这个金刚石氮-空位中心囚禁于一个耦合到两个波导的光子晶体腔。在Purcell体系中,对于非耦合腔和耦合腔的圆极化光的反射率和透射率的差异是鲁棒且可调的,这说明DIT是明显的。利用该DIT,我们实现了空间极化超CNOT门。在多个自由度的量子比特系统的量子信息协议中它们可以用更少的资源来执行更多的量子操作,这样可以减少能量损耗和光子耗散。
        Quantum informatics has attracted the attention of scientists as a new discipline in recent years,Quantum logic gate is the key structure of quantum information processing.We proposed the dipole induced transparency(DIT)of a diamond nitrogen-vacancy center embedded in a photonic crystal cavity coupled to two waveguides in this paper.In the Purcell system,the difference in reflectivity and transmittance for circularly polarized light in the uncoupled and coupled cavities is robust and adjustable,indicating that the DIT is obvious.With this DIT,We constructed Spatial-polarization hyper-CNOT gate.They can be used to perform more quantum operations with less resources in the quantum information protocols with multiqubit systems in several DOFs,which may reduce the resources consumed and the photonic dissipation.
引文
[1]Ferdinand S,Hartmut H,Mark R,et al.Realization of the Cirac-Zoller Controlled-NOT Quantum Gate[J].Nature(London),2003,422:408-411.DOI:10.1038/nature01494.
    [2]Yamamoto T,Pashkin Y A,Astafiev O,et al.Demonstration of Conditional Gate Operation using Superconducting Charge Qubits[J].Nature(London),2003,425:941-944.DOI:10.1038/nature02015.
    [3]Knill E,Laflamme R,Milburn G J.A Scheme for Efficient Quantum Computation with Linear Optics[J].Nature(London),2001,409:46-52.DOI:10.1038/35051009.
    [4]Liu Apeng,Cheng Liuyong,Guo Qi,et al.Universal Quantum Gates for Hybrid System Assisted by Atomic Ensembles Embedded in Double-sided Optical Cavities[J].Scientific Reports,2017,7:43675.DOI:10.1038/srep43675.
    [5]许丽,刘阿鹏.金刚石氮空位色心体系的量子纠缠态制备[J].量子光学学报,2017,23:18-23.DOI:10.3788/JQO20172301.000.
    [6]Auffeves-Garnier A,Simon C,G′erard J M,et al.Giant Optical Nonlinearity Induced by a Single Two-level System Interacting with a Cavity in the Purcell Regime[J].Physical Review A,2007,75(05):053823.DOI:10.1103/PhysRevA.75.053823.
    [7]O’Shea D,Junge C,Volz J,et al.Fiber-Optical Switch Controlled by a Single Atom[J].Physical Review Letters,2013,111(19):193601.DOI:10.1103/PhysRevLett.111.193601.
    [8]Waks E,Vuckovic J.Dispersive Properties and Large Kerr Nonlinearities using Dipole-induced Transparency in a Singlesided Cavity[J].Physical Review A,2006,73(4):168-168.DOI:10.1103/PhysRevA.73.041803.
    [9]Thompson J,Tiecke T,Peyronel T,et al.Nanophotonic Quantum Phase Switch with a Single Atom[J].Nature,2014,508(7495):241.DOI:10.1038/nature13188.
    [10]Liu Apeng,Cheng Liuyong,Zhang Shou,et al.Deterministic Controlled-phase Gate and SWAP Gate with Dipoleinduced Transparency in the Weak-coupling Regime[J].Optics Communications,2016,379:19-24.DOI:org/10.1016/j.optcom.2016.05.054.
    [11]Deng Fuguo,Ren Baocang,Li Xihan.Quantum Hyperentanglement and Its Applications in Quantum Information Processing[J].Science Bulletin,2017,62:46-68.DOI:10.1016/j.scib.2016.11.007.
    [12]Li Tao,Long Guilu.Hyperparallel Optical Quantum Computation Assisted by Atomic Ensembles Embedded in Doublesided Optical Cavities[J].Physical Review A,2016,94:022343.DOI:10.1103/PhysRevA.94.022343.
    [13]刘阿鹏.基于金刚石氮-空位系统的量子逻辑门及其应用[D].延吉:延边大学,2015,7-10.
    [14]Togan E,Chu Y,Trifonov A S,et al.Quantum Entanglement Between an Optical Photon and a Solid-state Spin Qubit[J].Nature(London),2010,466:730.DOI:10.1038/nature09256.
    [15]Wen J J,Yeon K H,Wang H F,et al.Scheme for Implementing the Optimal Quantum Cloning Via Long-range Offresonant Raman Coupling[J].Physical Society,2013,63(9):1696.DOI:10.3938/jkps.63.1696.
    [16]曾谨言.量子力学:第1卷[M].北京:科学出版社,2001:11-20.
    [17]Ren B C,Du F F,Deng F G.Hyperentanglement Concentration for Two-photon Four-qubit Systems with Linear Optics[J].Physical Review A,2013,88:012302.DOI:10.1103/PhysRevA.88.012302.
    [18]Tan H T,Zhang W M,Li G X.Entangling Two Distant Nanocavities Via a Waveguide[J].Physical Review A,2011,83(6):062310.DOI:10.1103/PhysRevA.83.062310.
    [19]Fan H,Imai H,Matsumoto K,et al.Phase-covariant Quantum Cloning of Qudits[J].Physical Review A,2003,67(2):022317.DOI:10.1103/PhysRevA.67.022317.
    [20]Lamas-Linares A,Simon C,Howell J C,et al.Experimental Quantum Cloning of Single Photons[J].Science,2012,296(5568):712.DOI:10.1126/science.1068972.
    [21]Wei Hairui,Deng Fuguo.Compact Quantum Gates on Electron-spin Qubits Assisted by Diamond Nitrogen-vacancy Centers Inside Cavities[J].Physical Review A,2013,88:042323.DOI:10.1103/PhysRevA.88.042323.
    [22]Ren Bao-cang,Deng Fu-guo.Hyper-parallel Photonic Quantum Computation With Coupled Quantum Dots[J].Scientific Reports,2014,4:4623.DOI:10.1038/srep04623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700