基于多项目晶圆流片的规模化光子集成技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Large-Scale Photonic Integration Technologies Based on Multi-Project Wafer Flow Sheet
  • 作者:郑秀 ; 刘永
  • 英文作者:Zheng Xiu;Liu Yong;State Key Laboratory of Electronic Thin Films and Integrated Devices,School of Optoelectronic Information,University of Electronic Science and Technology of China;Collaboration Innovation Center of Electronic Materials and Devices,University of Electronic Science and Technology of China;
  • 关键词:集成光学 ; 光子集成器件 ; 多项目晶圆流片 ; 光子集成回路 ; 硅基光电子学 ; 磷化铟
  • 英文关键词:integrated optics;;photonic integrated devices;;multi-project wafer flow sheet;;photonic integrated circuit;;silicon-based optoelectronics;;indium phosphide
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:电子科技大学光电信息学院电子薄膜与集成器件国家重点实验室;电子科技大学核心电子材料与器件协同创新中心;
  • 出版日期:2017-02-17 10:58
  • 出版单位:激光与光电子学进展
  • 年:2017
  • 期:v.54;No.616
  • 基金:国家自然科学基金(61090393,61421002);; 核心电子材料与器件协同创新中心基金(ICEM2015-1001)
  • 语种:中文;
  • 页:JGDJ201705001
  • 页数:9
  • CN:05
  • ISSN:31-1690/TN
  • 分类号:7-15
摘要
随着光网络通信容量的高速增长,将分立的光学器件集成化以减小器件尺寸、降低成本成为光电子器件发展的必然趋势。光子集成回路具有尺寸小、功耗低、质量轻等优点,是解决未来宽带光网络能耗大、体积大、容量小等问题的关键技术。综述了基于多项目晶圆流片的规模化光子集成技术,主要包括硅基光子集成技术、Ⅲ-Ⅴ族磷化铟集成技术,以及以氮化硅和二氧化硅多层波导结构为基础的TriPleX集成技术;介绍了目前可以提供这3种多项目晶圆流片光子集成技术的代工平台以及利用这些代工平台实现的一些光子集成芯片,并对这些平台的工艺参数进行了比较。
        With the rapid growth of communication capacity of optical networks,integrating discrete optical devices into a single chip to reduce footprint and cost becomes a development of optoelectronic devices.Photonic integrated circuit has many advantages such as small footprint,low power consumption and light weight,and it is a key technology for future broad-bandwidth optical networks to solve the problems of large energy consumption,large volume and small capacity.We review three kinds of large-scale photonic integration technologies which are based on multi-project wafer flow sheets,including silicon-based photonic integration technology,Ⅲ-Ⅴ indium phosphide integration technology and TriPleX integration technology which consists of multilayer waveguides of silicon nitride and silicon oxide.Three foundries supporting multi-project wafer sheet photonic integration technologies are introduced,and some chip examples realized by these foundries are presented.The comparison of technology parameters among different foundries is carried out.
引文
[1]Miller S E.Integrated optics:An introduction[J].Bell Syst Tech J,1969,48(7):2059-2069.
    [2]Tien P K.Integrated optics and new wave phenomena in optical waveguides[J].Rev Mod Phys,1977,49(2):361-420.
    [3]Li M,Chen X F,Su Y K,et al.Photonic integration circuits in China[J].IEEE J Quantum Elect,2016,52(1):0601017.
    [4]Thomson D,Zilkie A,Bowers J E,et al.Roadmap on silicon photonics[J].J Optics,2016,18(7):073003.
    [5]Smit M,Leijtens X,Ambrosius H,et al.An introduction to InP-based generic integration technology[J].Semicond Sci Tech,2014,29(8):083001.
    [6]W9rhoff K,Heideman R G,Leinse A,et al.TriPleX:A versatile dielectric photonic platform[J].Adv Opt Tech,2015,4(2):189-207.
    [7]Fang Z,Zhao C Z.Recent progress in silicon photonics:A review[J].ISRN Optics,2012,2012:428690.
    [8]Liu J F,Sun X C,Camacho-Aguilera R,et al.Ge-on-Si laser operating at room temperature[J].Opt Lett,2010,35(5):679-681.
    [9]Li G L,Zheng X Z,Yao J,et al.25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning[J].Opt Express,2011,19(21):20435-20443.
    [10]Liao S R,Feng N N,Feng D Z,et al.36 GHz submicron silicon waveguide germanium photodetector[J].Opt Express,2011,19(11):10967-10972.
    [11]Belt M,Blumenthal D J.Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4platform[J].Opt Express,2014,22(9):10655-10660.
    [12]Kish F A,Welch D,Nagarajan R,et al.Current status of large-scale InP photonic integrated circuits[J].IEEE J Sel Top Quant,2011,17(6):1470-1489.
    [13]Kish F,Nagarajan R,Welch D,et al.From visible light-emitting diodes to large-scaleⅢ-Ⅴphotonic integrated circuits[J].Proc of IEEE,2013,101(10):2255-2270.
    [14]Lawniczuk K.Multiwavelength transmitters in generic photonic integration technologies[D].Eindhoven:Technische Universiteit Eindhoven,2014.
    [15]EPIXfab[EB/OL].[2017-04-10].http://www.epixfab.eu/.
    [16]Europractice.Europractice silicon photonics technologies[EB/OL].[2017-04-10].http://www.europractice-ic.com/SiPhotonics_technology.php.
    [17]de Oliveira J C R F,Freitas A P,Peternella F G,et al.The first Brazilian integrated 100GDPQPSK transmitter on a4×3mm silicon photonic chip[C].SPIE,2014,9010:90100D.
    [18]Ruocco A,Bogaerts W.Fully integrated SOI wavelength meter based on phase shift technique[C].IEEE 12th International Conference on GPF,2015:15556423.
    [19]Lawniczuk K,Kazmierski C,Provost J G,et al.InP-based photonic multiwavelength transmitter with DBR laser array[J].IEEE Photonic Tech L,2013,25(4):352-354.
    [20]Zheng X,Raz O,Calabretta N,et al.Multiport InP monolithically integrated all-optical wavelength router[J].Opt Lett,2016,41(16):3892-3895.
    [21]Heideman R G,Hoekman M.Low modal birefringent waveguides and method of fabrication:US7146087[P].2006-12-5.http://xueshu.baidu.com/s?wd=paperuri:(6065b942b1f6fb652fc2b32d02e15535)&filter=sc_long_sign&sc_ks_para=q%3DLow+modal+birefringent+waveguides+and+method+of+fabrication&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=992176494255774108.
    [22]Heideman R G,Walker J A.Surface waveguide technology for telecom and biochemical sensing[C].SPIE,2006,6125:61250S.
    [23]Roeloffzen C G H,Zhuang L,Taddei C,et al.Silicon nitride microwave photonic circuits[J].Opt Express,2013,21(9):22937-22961.
    [24]Heideman R G,Geuzebroek D,Leinse A,et al.Low loss,high contrast optical waveguides based on CMOS compatible LPCVD processing[C].Proceedings European Conference on Integrated Optics,2007:WB0.
    [25]Bauters J F,Heck M J R,John D D,et al.Planar waveguides with less than 0.1dB/m propagation loss fabricated with wafer bonding[J].Opt Express,2011,19(24):24090-24101.
    [26]Luke K,Okawachi Y,Lamont M R E,et al.Broadband mid-infrared frequency comb generation in a Si3N4microresonator[J].Opt Lett,2015,40(21):4823-4826.
    [27]Shao Z K,Chen Y J,Chen H,et al.Ultra-low temperature silicon nitride photonic integration platform[J].Opt Express,2016,24(3):1865-1872.
    [28]SIMTAC.硅光技术[EB/OL].[2017-04-10].http://www.simtac.org/?page_id=238&lang=zh.
    [29]Boerkamp M,van Leest T,Heldens J,et al.On-chip optical trapping and Raman spectroscopy using a TriPleX dualwaveguide trap[J].Opt Express,2014,22(25):30528-30537.
    [30]Yu H,Li Y,Yu H,et al.Record high-Q optical bandpass filter based on the EIT-like effect between two microrings[C].Optical Fiber Communication Conference,2016:Th1K.5.
    [31]A*STAR IME.Multiple-projects wafer(MPW)services[EB/OL].[2017-04-10].http://www.a-star.edu.sg/ime/SERVICES/MULTI-PROJECT-WAFER-MPW-SERVICES.aspx.
    [32]Novack A,Liu Y,Ding R,et al.A 30GHz silicon photonic platform[C].SPIE,2013,8781:878107.
    [33]Baehr-Jones T.OpSIS-IME OI50 process-performance summary[EB/OL].(2013-10-08)[2017-04-10].http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary_10_8_13.pdf.
    [34]CMP.Silicon photonic ICs Si310-PHMP2M[EB/OL].[2017-04-10].http://cmp.imag.fr/datasheet/photonic-mpwprototyping-si310-phmp2m.
    [35]IHP.SG25PIC integrated photonics technology[EB/OL].(2015-02-01)[2017-04-10].http://www.ihpmicroelectronics.com/downloads/168/SG25PIC.pdf.
    [36]JePPIX.Multiproject wafers[EB/OL].[2017-04-10].http://www.jeppix.eu/multiprojectwafers-1/.
    [37]PhoeniX Software.Process design kits[EB/OL].[2017-04-10].http://www.phoenixbv.com/product.php?submenu=dk&prdgrpID=15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700