The energy-level and vibrational frequency properties of a polaron weak-coupled in a quantum well with asymmetrical Gaussian confinement potential
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The energy-level and vibrational frequency properties of a polaron weak-coupled in a quantum well with asymmetrical Gaussian confinement potential
  • 作者:Wei ; Xiao ; Jinglin ; Xiao
  • 英文作者:Wei Xiao;Jinglin Xiao;Department of Basic Sciences, University of Informational Science and Technology of Beijing;Institute of Condensed Matter Physics, Inner Mongolia University for the Nationalities;
  • 英文关键词:quantum well;;Gaussian confinement potential;;polaron;;vibrational frequency
  • 中文刊名:BDTX
  • 英文刊名:半导体学报(英文版)
  • 机构:Department of Basic Sciences, University of Informational Science and Technology of Beijing;Institute of Condensed Matter Physics, Inner Mongolia University for the Nationalities;
  • 出版日期:2019-04-15
  • 出版单位:Journal of Semiconductors
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Science Foundation of China(Nos.11464033,11464034)
  • 语种:英文;
  • 页:BDTX201904013
  • 页数:3
  • CN:04
  • ISSN:11-5781/TN
  • 分类号:55-57
摘要
The vibrational frequency(VF), the ground state(GS) energy and the GS binding energy of the weak electron-phonon coupling polaron in a quantum well(QW) with asymmetrical Gaussian confinement potential are calculated. First we introduce the linear combination operator to express the momentum and coordinates in the Hamilton and then operate the system Hamilton using unitary transformation. The results indicate the relations of the quantities(the VF, the absolute value of GS energy and the GS binding energy) and the parameters(the QW barrier height and the range of Gaussian confinement potential in the growth direction of the QW).
        The vibrational frequency(VF), the ground state(GS) energy and the GS binding energy of the weak electron-phonon coupling polaron in a quantum well(QW) with asymmetrical Gaussian confinement potential are calculated. First we introduce the linear combination operator to express the momentum and coordinates in the Hamilton and then operate the system Hamilton using unitary transformation. The results indicate the relations of the quantities(the VF, the absolute value of GS energy and the GS binding energy) and the parameters(the QW barrier height and the range of Gaussian confinement potential in the growth direction of the QW).
引文
[1] Ozturk 0, Ozturk E, Elagoz S. The effect of barrier width on the electronic properties of double GaAlAs/GaAs and GaInAs/GaAs quantum wells. J Mol Struct, 2018,1156,726
    [2] Samokhvalov P S, Linkov P A, Zvaigzne M A, et al. Optical properties of core-multishell quantum dots. KnE Energy Phys, 2018,3(2),449
    [3] Cai Z, Liu B, Zou X, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018,118(13), 6091
    [4] Belitsch M, Gruber C, Ditlbacher H, et al. Gray state dynamics in the blinking of single type I colloidal quantum dots. Nano, 2018,13(04), 1850039
    [5] Muβener J, Ludwig A T, Kalinowski S, et al. Optical emission of GaN/AIN quantum-wires-the role of charge transfer from a nanowire template. Nanoscale, 2018,10(12), 5591
    [6] Chen L J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv, 2018,8(33), 18396
    [7] Moon P, Forsythe C, Zhou X, et al. Electronic structure engineering of graphene using patterned dielectric superlattices. Bull Am Phys Soc, 2018
    [8] Wu X, Li J, Briggeman M, et al. Breaking electron pairs in pseudogap state in SmTi03/SrTi03/SmTi03 quantum wells. Bull Am Phys Soc, 2018
    [9] Ambacher O,Majewski J, Miskys C, et al. Pyroelectric properties of Al(In)GaN/GaN hetero-and quantum well structures. J Phys:Conden Matter, 2002,14(13), 3399
    [10] Makino T, Segawa Y, Kawasaki M, et al. Optical properties of excitons in ZnO-based quantum well heterostructures. Semicond Sci Technol, 2005,20(4),S78
    [11] Aumer M E, Leboeuf S F, Bedair S M, et al. Effects of tensile and compressive strain on the luminescence properties of AllnGaN/InGaN quantum well structures. Appl Phys Lett, 2000,77(6), 821
    [12] Nandi S. The quantum Gaussian well. Am J Phys, 2010, 78(12),1341
    [13] Wu J, Guo K, Liu G. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields. Physica B, 2014,446(9), 59
    [14] Xiao J L. The effects of hydrogen-like impurity and temperature on state energies and transition frequency of strong-coupling bound polaron in an asymmetric gaussian potential quantum well.J Low Temp Phys, 2018,192(1/2), 41
    [15] Xiao J L. Properties of strong-coupling polaron in an asymmetrical gaussian confinement potential quantum well. Journal of Inner Mongolia University for Nationalities, 2015,30,369
    [16] Lee T D, Low F E, Pines D. The motion of slow electrons in a polar crystal. Phys Rev, 1953,90(2), 297
    [17] Huybrechts W J. Note on the ground-state energy of the Feynman polaron model. J Physs C, 1976,9(8), L211
    [18] Devreese J T. Polarons in ionic crystals and polar semiconductors.Elsevier Science Publishing Co Inc., 1972

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700