大面积三维光子晶体的制备与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication and analyses of large-area three-dimensional photonic crystals
  • 作者:姜诚 ; 薛燕陵 ; 王瑞
  • 英文作者:JIANG Cheng;XUE Yan-ling;WANG Rui;Department of Communication Engineering,East China Normal University;
  • 关键词:三维光子晶体 ; 光诱导法 ; 光折变效应 ; 周期控制
  • 英文关键词:three dimensional photonic crystal;;optical induction method;;photorefractive effect;;periodic control
  • 中文刊名:GDZJ
  • 英文刊名:Journal of Optoelectronics·Laser
  • 机构:华东师范大学通信工程系;
  • 出版日期:2018-11-15
  • 出版单位:光电子·激光
  • 年:2018
  • 期:v.29;No.281
  • 基金:国家自然科学重点基金(11234003);; 国家重点研发计划“量子调控与量子信息”重点专项(2016YFA0302000)资助项目
  • 语种:中文;
  • 页:GDZJ201811006
  • 页数:8
  • CN:11
  • ISSN:12-1182/O4
  • 分类号:35-42
摘要
采用中心带孔的多光楔棱镜产生多光束干涉图案,利用光诱导法在掺铁铌酸锂晶体中制作多种包括光子准晶在内的大面积三维光子晶体。介绍了制作装置和实现方法,观测了两种光子晶体微结构正面及侧面结构特点,同时拍摄了光子晶体的布里渊区图。通过仿真计算定量分析光子晶体,详细分析了三维结构的周期性变化特点。提出通过改变光楔楔角角度实现对三维光子晶体周期的控制。利用布拉格反射实验验证所做三维光子晶体的周期性,并测量了晶面间距。
        In this paper,large-area three-dimensional photonic crystals including photonic quasicrystals were fabricated in an iron doped lithium niobate crystal using optical induction method and with the center-perforated multi-optical wedge prisms to generate the multi-beam interference patterns.The front and lateral structural characteristics and the Brillouin zone of the photonic crystal and the photonic quasicrystal were observed.Numerical simulation was performed to quantitatively analyze the periodic characteristics of the three-dimensional photonic crystal structures.And an approach is proposed to manipulate the period of three-dimensional photonic crystals through the alteration of the vertex angle of optical wedges.The Bragg reflection experiment was performed to confirm the periodicity of the fabricated three-dimensional photonic crystals and measure the interplanar spacing of the photonic crystal lattice.
引文
[1] Joannopoulos J D,Villeneuve P R,Fan S.Photonic crystals:putting a new twist on light[J].Nature,1997,386(6621):143-149.
    [2] Yablonovitch E.Inhibited spontaneous emission in solidstate physics and electronics[J].Physical review letters,1987,58(20):2059-2062.
    [3] John S.Strong localization of photons in certain disordered dielectric superlattices[J].Physical review letters,1987,58(23):2486-2489.
    [4] Zhao Y,Xie Z,Gu H,et al.Bio-inspired variable structural color materials[J].Chemical Society Reviews,2012,41(8):3297-3317.
    [5] Wang Z,Fan S.Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines[J].Physical Review E,2003,68(6):066616.
    [6] Zhang H F,Chen Y Q.The properties of two-dimensional fractal plasma photonic crystals with Thue-Morse sequence[J].Physics of Plasmas,2017,24(4):042116.
    [7] Zhang H F,Liu S B.Enhanced the tunable omnidirectional photonic band gaps in the two-dimensional plasma photonic crystals[J].Optical and Quantum Electronics,2016,48(11):508.
    [8] MA Rong-kun,ZHANG Yi-chi,FANG Yun-tuan.Broadband THz absorbers based on graphene and1-D photonic crystal[J].Laser Technology,2017,41(5):723-727.马荣坤,张亦驰,方云团.基于石墨烯和1维光子晶体的THz宽带吸收器[J].激光技术,2017,41(5):723-727.
    [9] Cong Z,Ying M,Yang W,et al.Research progress of photonic crystal solar cells[J].Acta Chimica Sinica,2018,76(1):9-21.赵聪,马颖,汪洋,等.光子晶体太阳能电池研究进展[J].化学学报,2018,76(1):9-21.
    [10]Shen H,Wang Z,Wu Y,et al.One-dimensional photonic crystals:fabrication,responsiveness and emerging applications in 3D construction[J].RSC Advances,2016,6(6):4505-4520.
    [11]Akahane Y,Asano T,Song B S,et al.High-Q photonic nanocavity in a two-dimensional photonic crystal[J].Nature,2003,425(6961):944-947.
    [12]Abrarov S M,Yuldashev S U,Lee S B,et al.Suppression of the green photoluminescence band in ZnO embedded into porous opal by spray pyrolysis[J].Journal of Luminescence,2004,109(1):25-29.
    [13]Blanco A,Chomski E,Grabtchak S,et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J].Nature,2000,405(6785):437-440.
    [14]Bloemer M J,Scalora M.Transmissive properties of Ag/MgF2photonic band gaps[J].Applied Physics Letters,1998,72(14):1676-1678.
    [15]¨Ozbay E,Abeyta A,Tuttle G,et al.Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods[J].Phys.Rev.B Condens Matter,1994,50(3):1945-1948.
    [16]Yang S M,Miguez H,Ozin G A.Opal circuits of light—planarized microphotonic crystal chips[J].Advanced Functional Materials,2002,12(6-7):425-431.
    [17]Matoba O,Ichioka Y,Itoh K.Array of photorefractive waveguides for massively parallel optical interconnections in lithium niobate[J].Optics letters,1996,21(2):122-124.
    [18]Cowan J J.The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry[C].Society of Photo-Optical Instrumentation Engineers(SPIE)Conference Series,1984,503:120-129.
    [19]Bartal G,Cohen O,Buljan H,et al.Brillouin zone spectroscopy of nonlinear photonic lattices[J].Physical review letters,2005,94(16):163902.
    [20]Jin W,Xue Y L,Jiang D.Area scalable optically induced photorefractive photonic microstructures[J].Optical Materials,2016,57:174-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700